首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于特征选择的医学图像检索方法
引用本文:顾志伟,吴秀清,荆浩,尹东,王艺元. 一种基于特征选择的医学图像检索方法[J]. 中国生物医学工程学报, 2007, 26(1): 30-34
作者姓名:顾志伟  吴秀清  荆浩  尹东  王艺元
作者单位:1. 中国科学技术大学电子工程与信息科学系,合肥,230027
2. 深圳安科高技术股份有限公司,深圳,518067
基金项目:深圳安科高技术股份有限公司基金
摘    要:提出了一种基于特征选择的医学图像检索方法。考虑到医学图像的多类别特性,将分类与检索结合,采用AdaBoost方法对样本进行多次抽样,并将分类精度作为判据对特征进行选择,选取少量有利于分类的特征,同时将单特征弱分类器增强为强分类器。在检索阶段,本方法在选择后的特征子集以及类别子空间中进行检索。实验结果表明,与传统方法相比,本方法能达到较高的查准率,计算量也明显降低。

关 键 词:医学图像检索  SVM分类  AdaBoost特征选择
文章编号:0258-8021(2007)01-0030-05
收稿时间:2006-04-21
修稿时间:2006-11-13

A Feature Selection Based Approach in Medical Image Retrieval
GU Zhi-Wei,WU Xiu-Qing,JING Hao,YIN Dong,WANG Yi-Yuan. A Feature Selection Based Approach in Medical Image Retrieval[J]. Chinese Journal of Biomedical Engineering, 2007, 26(1): 30-34
Authors:GU Zhi-Wei  WU Xiu-Qing  JING Hao  YIN Dong  WANG Yi-Yuan
Abstract:A novel method of medical image retrieval based on feature selection is proposed in this paper. Considering the multi-class property of medical images, it combines classification and retrieval parts, using AdaBoost method by re-weighting the select rate of training samples. Using classification accuracy as the criterion of feature selection, this method selects a few features from the feature pools which are propitious to retrieval; meanwhile, it boosts the weak classifiers into a strong one. In the retrieval step, this method retrieves medical images in the sub-feature set and sub-class space. Compared with general approaches, experiments show that, our method can achieve a high precision and a comparatively lower computation cost.
Keywords:medical image retrieval   SVM   AdaBoost deature selection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号