Selective transmission of R5-tropic HIV type 1 from dendritic cells to resting CD4+ T cells |
| |
Authors: | David S A Smith M S Lopez G J Adany I Mukherjee S Buch S Goodenow M M Narayan O |
| |
Affiliation: | Merrell Dow Laboratory of Viral Pathogenesis Department of Microbiology, Immunology, and Molecular Genetics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA. sdavid@kumc.edu |
| |
Abstract: | In an in vitro coculture model of monocyte-derived, cultured human dendritic cells (DC) with autologous CD4(+) resting T cells, CCR5 (R5)-tropic strains of HIV-1, but not CXCR4 (X4)-tropic strains, were transmitted to resting CD4+ T cells, leading to prolific viral output, although DC were susceptible to infection with either strain. Macrophages, which were also infectable with either R5- or X4-tropic strains, did not transmit infection to CD4+ cells. Highly productive HIV infection in this model appeared to be a consequence of heterokaryotic syncytium formation between infected DC and T cells since syncytia formation developed only in R5-infected DC/CD4+ cocultures. These results suggested that the unique microenvironment derived from the fusion between the infected DC and CD4+ cell was highly permissive and selective for replication of R5-tropic viruses. The apparent selectivity for R5-tropic strains in such syncytia was attributable neither to differential DC-mediated activation nor to selective modulation of induction of alpha- or beta-chemokines in the infected DC. This model of HIV replication may provide useful insights into in vitro correlates of HIV pathogenicity. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|