Iterative concurrent reconstruction algorithms for emission computed tomography |
| |
Authors: | Brown J K Hasegawa B H Lang T F |
| |
Affiliation: | Department of Radiology and the Bioengineering Graduate Group, University of California at San Francisco, San Francisco, CA 94143, USA. |
| |
Abstract: | Direct reconstruction techniques, such as those based on filtered backprojection, are typically used for emission computed tomography (ECT), even though it has been argued that iterative reconstruction methods may produce better clinical images. The major disadvantage of iterative reconstruction algorithms, and a significant reason for their lack of clinical acceptance, is their computational burden. We outline a new class of 'concurrent' iterative reconstruction techniques for ECT in which the reconstruction process is reorganized such that a significant fraction of the computational processing occurs concurrently with the acquisition of ECT projection data. These new algorithms use the 10-30 min required for acquisition of a typical SPECT scan to iteratively process the available projection data, significantly reducing the requirements for post-acquisition processing. These algorithms are tested on SPECT projection data from a Hoffman brain phantom acquired with a 2 x 10(5) counts in 64 views each having 64 projections. The SPECT images are reconstructed as 64 x 64 tomograms, starting with six angular views. Other angular views are added to the reconstruction process sequentially, in a manner that reflects their availability for a typical acquisition protocol. The results suggest that if T s of concurrent processing are used, the reconstruction processing time required after completion of the data acquisition can be reduced by at least 1/3T s. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|