Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. |
| |
Authors: | H A Berger M P Anderson R J Gregory S Thompson P W Howard R A Maurer R Mulligan A E Smith M J Welsh |
| |
Affiliation: | Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242. |
| |
Abstract: | Cystic fibrosis transmembrane conductance regulator (CFTR) generates cAMP-regulated Cl- channels; mutations in CFTR cause defective Cl- channel function in cystic fibrosis epithelia. We used the patch-clamp technique to determine the single channel properties of Cl- channels in cell expressing recombinant CFTR. In cell-attached patches, an increase in cellular cAMP reversibly activated low conductance Cl- channels. cAMP-dependent regulation is due to phosphorylation, because the catalytic subunit of cAMP-dependent protein kinase plus ATP reversibly activated the channel in excised, cell-free patches of membrane. In symmetrical Cl- solutions, the channel had a channel conductance of 10.4 +/- 0.2 (n = 7) pS and a linear current-voltage relation. The channel was more permeable to Cl- than to I- and showed no appreciable time-dependent voltage effects. These biophysical properties are consistent with macroscopic studies of Cl- channels in single cells expressing CFTR and in the apical membrane of secretory epithelia. Identification of the single channel characteristics of CFTR-generated channels allows further studies of their regulation and the mechanism of ion permeation. |
| |
Keywords: | |
|
|