Methamphetamine induces striatal neurokinin‐1 receptor endocytosis primarily in somatostatin/NPY/NOS interneurons and the role of dopamine receptors in mice |
| |
Authors: | Jing Wang Jesus A. Angulo |
| |
Affiliation: | Department of Biological Sciences, Hunter College of the City University of New York, New York, New York |
| |
Abstract: | Methamphetamine (METH) is a psychostimulant that induces long‐term deficits of dopamine terminal markers and apoptotic cell death in the striatum. Our laboratory demonstrated that pharmacological blockade of the neurokinin‐1 receptor attenuated the METH‐induced damage to the striatal dopamine terminals and the apoptotic cell death of some striatal neurons. Here, we used histological methods to assess the effect of METH on neurokinin‐1 receptor trafficking in the striatum as an indirect index of signaling by the neuropeptide substance P (natural ligand for this receptor). Male mice received a single injection of METH (30 mg/kg, i.p.) and were sacrificed 30 min later. Immunohistofluorescence confocal microscopy confirmed that the neurokinin‐1 receptor is located on cholinergic and somatostatin interneurons of the striatum. METH induced the trafficking of the neurokinin‐1 receptor from the membrane into cytoplasmic endosomes primarily in the somatostatin/NPY/NOS interneurons, and this phenomenon was attenuated by antagonists of the dopamine D1 (SCH‐23390), D2 (raclopride), or neurokinin‐1 (WIN‐51,708) receptors. These data demonstrate that METH induces the trafficking of the striatal neurokinin‐1 receptors principally in the somatostatin/NPY/NOS interneurons and that this phenomenon is dependent on the activity of dopamine D1 and D2 receptors. Synapse, 2011. © 2010 Wiley‐Liss, Inc. |
| |
Keywords: | neurokinin‐1 receptor dopamine receptors methamphetamine endocytosis interneuron striatum |
|
|