首页 | 本学科首页   官方微博 | 高级检索  
     


Significant disparity in base and sugar damage in DNA resulting from neutron and electron irradiation
Authors:Dalong Pang  Jeffrey S. Nico  Lisa Karam  Olga Timofeeva  William F. Blakely  Anatoly Dritschilo  Miral Dizdaroglu  Pawel Jaruga
Abstract:In this study, a comparison of the effects of neutron and electron irradiation of aqueous DNA solutions was investigated to characterize potential neutron signatures in DNA damage induction. Ionizing radiation generates numerous lesions in DNA, including base and sugar lesions, lesions involving base–sugar combinations (e.g. 8,5′-cyclopurine-2′-deoxynucleosides) and DNA–protein cross-links, as well as single- and double-strand breaks and clustered damage. The characteristics of damage depend on the linear energy transfer (LET) of the incident radiation. Here we investigated DNA damage using aqueous DNA solutions in 10 mmol/l phosphate buffer from 0–80 Gy by low-LET electrons (10 Gy/min) and the specific high-LET (∼0.16 Gy/h) neutrons formed by spontaneous 252Cf decay fissions. 8-hydroxy-2′-deoxyguanosine (8-OH-dG), (5′R)-8,5′-cyclo-2′-deoxyadenosine (R-cdA) and (5′S)-8,5′-cyclo-2′-deoxyadenosine (S-cdA) were quantified using liquid chromatography–isotope-dilution tandem mass spectrometry to demonstrate a linear dose dependence for induction of 8-OH-dG by both types of radiation, although neutron irradiation was ∼50% less effective at a given dose compared with electron irradiation. Electron irradiation resulted in an exponential increase in S-cdA and R-cdA with dose, whereas neutron irradiation induced substantially less damage and the amount of damage increased only gradually with dose. Addition of 30 mmol/l 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS), a free radical scavenger, to the DNA solution before irradiation reduced lesion induction to background levels for both types of radiation. These results provide insight into the mechanisms of DNA damage by high-LET 252Cf decay neutrons and low-LET electrons, leading to enhanced understanding of the potential biological effects of these types of irradiation.
Keywords:electron LINAC irradiation, 252Cf decay fission neutrons, 8-hydroxy-2′  -deoxyguanosine, (5′  R)-8,5′  -cyclo-2′  -deoxyadenosine, and (5′  S)-8,5′  -cyclo-2′  -deoxyadenosine, liquid chromatography–  isotope-dilution tandem mass spectrometry, relative biological effectiveness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号