首页 | 本学科首页   官方微博 | 高级检索  
     


Diencephalic locomotor region in the lamprey--afferents and efferent control
Authors:Ménard Ariane  Grillner Sten
Affiliation:Nobel Institute for Neurophysiology, Dept. of Neuroscience, Karolinska Institutet, Retzius vag 8, SE-171 77 Stockholm, Sweden. Sten.Grillner@ki.se).
Abstract:
In vertebrates, locomotion can be initiated by stimulation of the diencephalic locomotor region (DLR). Little is known of the different forebrain regions that provide input to the neurons in DLR. In the lamprey, it had been shown previously that DLR provides monosynaptic input to reticulospinal neurons, which in turn elicit rhythmic ventral root activity at the spinal level. To show that actual locomotor movements are produced from DLR, we use a semi-intact preparation in which the brain stem is exposed and the head fixed, while the body is left to generate actual swimming movements. DLR stimulation induced symmetric locomotor movements with an undulatory wave transmitted along the body. To explore if DLR is under tonic GABAergic input under resting conditions, as in mammals, GABAergic antagonists and agonists were locally administered into DLR. Injections of GABA agonists inhibited locomotion, whereas GABA antagonists facilitated the induction of locomotion. These findings suggest that GABAergic projections provide tonic inhibition that once turned off can release locomotion. Double-labeling experiments were carried out to identify GABAergic projections to the DLR. Populations of GABAergic projection neurons to DLR originated in the caudoventral portion of the medial pallium, the lateral and dorsal pallium, and the striatal area. These different GABAergic projection neurons, which also project to other brain stem motor centers, may represent the basal ganglia output to DLR. Moreover, electrical stimulation of striatum induced long-lasting plateau potentials in reticulospinal cells and associated locomotor episodes dependent on DLR being intact, suggesting that striatum may act via the basal ganglia output identified here.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号