首页 | 本学科首页   官方微博 | 高级检索  
     


Elemental composition and water content of myelinated axons and glial cells in rat central nervous system
Authors:Richard M. LoPachin   Carolyn M. Castiglia  Albert J. Saubermann
Abstract:The distribution of elements (e.g. Na, Cl, K) and water in CNS cells is unknown. Therefore, electron probe X-ray microanalysis (EPMA) was used to measure water content and concentrations (mmol/kg dry or wet weight) of Na, Mg, P, S, Cl, K and Ca in morphological compartments of myelinated axons and glial cells from rat optic nerve and cervical spinal cord white matter. Axons in both CNS regions exhibited similar water content ( 90%), and relatively high concentrations (wet and dry weight) of K with low Na and Ca levels. The K content of axons was related to diameter, i.e. small axons in spinal cord and optic nerve had significantly less (25–50%) K than larger diameter axons from the same CNS region. The elemental composition of spinal cord mitochondria was similar to corresponding axoplasm, whereas the water content (75%) of these organelles was substantially lower than that of axoplasm. In glial cell cytoplasm of both CNS areas, P and K (wet and dry weight) were the most abundant elements and water content was approximately 75%. CNS myelin had predominantly high P levels and the lowest water content (33–55%) of any compartment measured. The results of this study demonstrate that each morphological compartment of CNS axons and glia exhibits a characteristic elemental composition and water content which might be related to the structure and function of that neuronal region.
Keywords:Element   Cell water   Rat   Optic nerve   Spinal cord   Microanalysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号