首页 | 本学科首页   官方微博 | 高级检索  
     


Survival of Mammary Stem Cells in Suspension Culture: Implications for Stem Cell Biology and Neoplasia
Authors:Gabriela?Dontu  mailto:gdontu@umich.edu"   title="  gdontu@umich.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Max?S.?Wicha
Affiliation:(1) Department of Internal Medicine, Hematology–Oncology, Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan;(2) 1500 E Medical Center Dr., 7110 CCGC Ann Arbor, Michigan, 48109
Abstract:
There is increasing evidence that a variety of neoplasms including breast cancer may result from transformation of normal stem and progenitor cells. In the past, isolation and characterization of mammary stem cells has been limited by the lack of suitable culture systems able to maintain these cells in an undifferentiated state in vitro. We have recently described a culture system in which human mammary stem and progenitor cells are able to survive in suspension and produce spherical colonies composed of both stem and progenitor cells. Recent observation that adult stem cells from other tissues may also retain the capacity for growth under anchorage independent conditions suggests a common underlying mechanism. We propose that this mechanism involves the interaction between the canonical Wnt signal pathway and E-cadherin. The Wnt pathway has been implicated in normal stem cell self-renewal in vivo. Furthermore, there is evidence that deregulation of this pathway in the mammary gland and other organs may play a key role in carcinogenesis. Thus, the development of in vitro suspension culture systems not only provides an important new tool for the study of mammary cell biology, but also may have important implications for understanding key molecular pathways in both normal and neoplastic stem cells.
Keywords:stem cells  cancer stem cells  breast cancer  mammary gland development  Wnt signaling  self-renewal  differentiation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号