首页 | 本学科首页   官方微博 | 高级检索  
     


Proteomic analysis of putative latex allergens
Authors:Yagami Takeshi  Haishima Yuji  Tsuchiya Toshie  Tomitaka-Yagami Akiko  Kano Hisao  Matsunaga Kayoko
Affiliation:Division of Medical Devices, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan. yagama@nihs.go.jp
Abstract:BACKGROUND: Extensive analysis of allergenic proteins is generally time-consuming and labor-intensive. Accordingly, a rapid and easy procedure for allergen identification is required. As sequence information on proteins and genes is accumulated in databases, it is becoming easier to identify a candidate protein using proteomic strategies, i.e. two-dimensional gel electrophoresis, site-specific fragmentation, mass spectrometry and then database search. In this study, we evaluated the usefulness of a proteomic strategy for identifying putative allergens through its application to latex proteins. METHODS: Latex proteins were separated with two-dimensional gel electrophoresis, and putative allergens were visualized by IgE immunoblotting using pooled serum from latex-sensitive patients. The IgE-interactive proteins were cut out from the negatively stained two-dimensional gel and subjected to in-gel digestion by trypsin. Then the resulting peptides were analyzed with mass spectrometry. Based on the mass spectrometric data we obtained, the allergen candidates were assigned by a database search. RESULTS: Five previously reported allergens and five new allergen candidates were identified with the proteomic approach without isolating the individual proteins. Less than 1 mg of crude latex protein was sufficient for the entire protocol. Because plural proteins can be processed in parallel, analysis of about 50 IgE-interactive proteins was accomplished within 1 week. CONCLUSIONS: Analysis of putative allergens with proteomic strategies (allergenomics) is a promising avenue for rapid and exhaustive research. The high resolving power of two-dimensional gel electrophoresis is superior to conventional gel electrophoresis. Moreover, the notable sensitivity and speed of mass spectrometry have pronounced advantages over the N-terminal sequencing that has generally been used for protein identification.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号