首页 | 本学科首页   官方微博 | 高级检索  
     


Deletion of protein kinase C-beta isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model
Authors:Meier Matthias  Park Joon-Keun  Overheu Daniel  Kirsch Torsten  Lindschau Carsten  Gueler Faikah  Leitges Michael  Menne Jan  Haller Hermann
Affiliation:Department of Nephrology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany. meier.matthias@mh-hannover.de
Abstract:
The protein kinase C (PKC)-beta isoform has been implicated to play a pivotal role in the development of diabetic kidney disease. We tested this hypothesis by inducing diabetic nephropathy in PKC-beta-deficient (PKC-beta(-/-)) mice. We studied nondiabetic and streptozotocin-induced diabetic PKC-beta(-/-) mice compared with appropriate 129/SV wild-type mice. After 8 weeks of diabetes, the high-glucose-induced renal and glomerular hypertrophy, as well as the increased expression of extracellular matrix proteins such as collagen and fibronectin, was reduced in PKC-beta(-/-) mice. Furthermore, the high-glucose-induced expression of the profibrotic cytokine transforming growth factor (TGF)-beta1 and connective tissue growth factor were significantly diminished in the diabetic PKC-beta(-/-) mice compared with diabetic wild-type mice, suggesting a role of the PKC-beta isoform in the regulation of renal hypertrophy. Notably, increased urinary albumin-to-creatinine ratio persisted in the diabetic PKC-beta(-/-) mice. The loss of the basement membrane proteoglycan perlecan and the podocyte protein nephrin in the diabetic state was not prevented in the PKC-beta(-/-) mice as previously demonstrated in the nonalbuminuric diabetic PKC-alpha(-/-) mice. In summary, the differential effects of PKC-beta deficiency on diabetes-induced renal hypertrophy and albuminuria suggest that PKC-beta contributes to high-glucose-induced TGF-beta1 expression and renal fibrosis, whereas perlecan, as well as nephrin, expression and albuminuria is regulated by other signaling pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号