Abstract: | Damage‐sensing and healing are biological functions which are urgently required in structural health monitoring and remediation of engineering structures. The development of a bio‐inspired multiple cycle damage sensing and triggered healing magnet–polymer nanocomposite (Magpol) is reported. Magpol is comprised of an acrylonitrile butadiene co‐polymer (NBR) matrix and a magnetic nanoparticle (MNP) filler. Magpol nanocomposites in a range of MNP filler concentrations are studied. NBR is selected as the matrix due to its extensive use in industrial coatings, for example, in the automotive industry. Mn‐Zn ferrite MNP is chosen due to its appropriate Curie temperature and good specific absorption rate. Exposure of damaged Magpol to a remote external alternating magnetic field results in MNP heating. The MNP heats the surrounding NBR matrix, resulting in triggered healing. Fractured Magpol samples are successfully healed over several cycles. Incorporation of rhodamine b mechano‐chromophore in Magpol results in multicycle damage sensing by photo‐luminescent absorption. Thus, the developed Magpol is attractive for structural health monitoring and remediation application. |