首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of ultrafine diesel exhaust particles on oxidative stress generation and dopamine metabolism in PC-12 cells
Affiliation:1. Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea;2. Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research/Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, United States;3. Department of Medicine, University of California at Irvine, 19182 Jamboree Rd. FRF 100, Irvine, CA, United States
Abstract:A major constituent of urban air pollution is diesel exhaust, a complex mixture of gases, chemicals, and particles. Recent evidence suggests that exposure to air pollution can increase the risk of a fatal stroke, cause cerebrovascular damage, and induce neuroinflammation and oxidative stress that may trigger neurodegenerative diseases, such as Parkinson's disease. The specific aim of this study was to determine whether ultrafine diesel exhaust particles (DEPs), the particle component of exhaust from diesel engines, can induce oxidative stress and effect dopamine metabolism in PC-12 cells. After 24 h exposure to DEPs of 200 nm or smaller, cell viability, ROS and nitric oxide (NO2) generation, and levels of dopamine (DA) and its metabolites, (dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)), were evaluated. Results indicated cell viability was not significantly changed by DEP exposure. However, ROS showed dramatic dose-dependent changes after DEP exposure (2.4 fold increase compared to control at 200 μg/mL). NO2 levels were also dose-dependently increased after DEP exposure. Although not in a dose-dependent manner, upon DEP exposure, intracellular DA levels were increased while DOPAC and HVA levels decreased when compared to control. Results suggest that ultrafine DEPs lead to dopamine accumulation in the cytoplasm of PC-12 cells, possibly contributing to ROS formation. Further studies are warranted to elucidate this mechanism.
Keywords:Diesel exhaust particles  Oxidative stress  Dopamine  PC-12 cells  Neurotoxicity  DEPs"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  diesel exhaust particles  DOPAC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  dihydroxyphenylacetic acid  HVA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  homovanillic acid  PM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0065"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  particulate matter  DA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  dopamine  HPLC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  high performance liquid chromatography  PAHs"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kw0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  polycyclic aromatic hydrocarbons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号