首页 | 本学科首页   官方微博 | 高级检索  
     

基于生物信息学的胃癌预后基因的筛选和分析
作者姓名:程晓成  李凡  肖竞英  焦作义
作者单位:兰州大学第二医院普外科 730000
基金项目:兰州大学第二医院“萃英科技创新”计划项目(CY2017-ZD03)
摘    要:
目的 应用生物信息学方法筛选和分析胃癌预后基因。方法 从GEO数据库中下载胃癌基因芯片数据集GSE54129、GSE81948、GSE118916,使用在线分析工具GEO2R筛选出差异表达基因(differentially expressed genes,DEGs)。利用在线数据库DAVID对筛选的DEGs进行功能和通路富集分析。然后使用在线网站STRING和Cytoscape软件对DEGs构建蛋白互作网络,并筛选hub基因。最后使用Kaplan Meier-Plotter和GEPIA在线数据库对hub基因进行生存和表达水平分析。结果本研究共发现362个总DEGs,包含164个上调基因,192个下调基因。通过GO功能富集分析,发现DEGs主要富集在细胞外基质和胶原蛋白。KEGG富集通路分析显示,DEGs主要参与的信号通路包括ECM-受体相互作用、阿米巴病、蛋白质的消化和吸收、局部黏附和PI3K-Akt信号通路。CytoHubba插件共筛选出10个DEGs作为hub基因,通过Kaplan Meier-Plotter数据库验证这10个hub基因,发现COL1A1、COL3A1、FN1、MMP2、COL5A1、BGN、COL4A1、COL4A2和COL6A3这9个基因和胃癌预后相关,并且高表达组预后差(P<0.05);GEPIA数据库发现这9个与胃癌预后相关的基因在胃癌组织中均呈高表达水平(P<0.05)。结论 通过生物信息学方法,本研究发现了9个胃癌预后基因,其中BGN、COL3A1和COL5A1这3个基因可能成为胃癌预后的新的标志物。

关 键 词:胃癌 生物信息学 差异表达基因 预后 靶点
收稿时间:2020-05-13
修稿时间:2020-05-18
点击此处可从《医学研究杂志》浏览原始摘要信息
点击此处可从《医学研究杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号