首页 | 本学科首页   官方微博 | 高级检索  
     


Population Pharmacokinetic Modeling of the Enterohepatic Recirculation of Fimasartan in Rats,Dogs, and Humans
Authors:Tae Hwan Kim  Soyoung Shin  Cornelia B. Landersdorfer  Yong Ha Chi  Soo Heui Paik  Jayhyuk Myung  Rajbharan Yadav  Stefan Horkovics-Kovats  Jürgen B. Bulitta  Beom Soo Shin
Abstract:
Enterohepatic recirculation (EHC) can greatly enhance plasma drug exposures and therapeutic effects. This study aimed to develop a population pharmacokinetic model that can simultaneously characterize the extent and time-course of EHC in three species using fimasartan, a novel angiotensin II receptor blocker, as a model drug. All fimasartan plasma concentration profiles in 32 rats (intravenous doses, 0.3–3 mg/kg; oral doses, 1–10 mg/kg), 34 dogs (intravenous doses, 0.3–1 mg/kg; oral doses, 1–10 mg/kg), and 42 healthy volunteers (single or multiple oral doses, 20–480 mg) were determined via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and simultaneously modeled in S-ADAPT. The proposed model quantitatively characterized EHC in three species after oral and intravenous dosing. The median (range) fraction of drug undergoing recirculation was 76.3% (64.9–88.7%) in rats, 33.3% (24.0–45.9%) in dogs, and 65.6% (56.5–72.0%) in humans. In the presence compared with the absence of EHC, the area under the curve in plasma was predicted to be 4.22-fold (2.85–8.85) as high in rats, 1.50-fold (1.32–1.85) in dogs, and 2.91-fold (2.30–3.57) in humans. The modeled oral bioavailability in rats (median (range), 38.7% (20.0–59.8%)) and dogs (median, 7.13% to 15.4%, depending on the formulation) matched the non-compartmental estimates well. In humans, the predicted oral bioavailability was 25.1% (15.1–43.9%) under fasting and 18.2% (12.2–31.0%) under fed conditions. The allometrically scaled area under the curve predicted from rats was 420 ng ⋅ h/mL for 60 mg fimasartan compared with 424 ± 63 ng ⋅ h/mL observed in humans. The developed population pharmacokinetic model can be utilized to characterize the impact of EHC on plasma drug exposure in animals and humans.

Electronic supplementary material

The online version of this article (doi:10.1208/s12248-015-9764-2) contains supplementary material, which is available to authorized users.KEY WORDS: animal to human scaling, enterohepatic recirculation, fimasartan, population pharmacokinetics, S-ADAPT
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号