首页 | 本学科首页   官方微博 | 高级检索  
     


Control of microtubule stability by the RASSF1A tumor suppressor
Authors:Liu Limin  Tommasi Stella  Lee Dong-Hyun  Dammann Reinhard  Pfeifer Gerd P
Affiliation:Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
Abstract:
The RAS association domain family 1A (RASSF1A) gene is silenced by DNA methylation in over 50% of all solid tumors of different histological types. However, the biochemical function of the RASSF1A protein is unknown. We show that RASSF1A colocalizes with microtubules in interphase and decorates spindles and centrosomes during mitosis. RASSF1A has a strong cytoprotective activity against the microtubule-destabilizing drug nocodazole, and against cold-treatment in vivo. Conversely, loss of RASSF1 in RASSF1-/- mouse embryonic fibroblasts renders the cells more sensitive to nocodazole-induced depolymerization of microtubules. The domain required for both microtubule association and stabilization was mapped to a 169 amino-acid fragment that contains the RAS association domain. Overexpression of RASSF1A induces mitotic arrest at metaphase with aberrant mitotic cells reminiscent of such produced by the microtubule-stabilizing drug paclitaxel (taxol), including monopolar spindles, or complete lack of a mitotic spindle. Altered microtubule stability in cells lacking RASSF1A is likely to affect spindle assembly and chromosome attachment, processes that need to be carefully controlled to protect cells from genomic instability and transformation. In addition, knowledge of the microtubule-targeting function of RASSF1 may aid in the development of new anticancer drugs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号