首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone
Authors:CF Samer   Y Daali   M Wagner   G Hopfgartner   CB Eap   MC Rebsamen   MF Rossier   D Hochstrasser   P Dayer   JA Desmeules
Abstract:

Background and purpose:

There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug–drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored.

Experimental approach:

A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg·kg−1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session.

Key results:

CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and Cmax (−0.71 < Spearman correlation coefficient ρs < −0.92). Oxymorphone Cmax was 62% and 75% lower in PM than EM and UM. Noroxymorphone Cmax reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone Cmax by 40% and 80%, and increased noroxycodone AUC by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition.

Conclusions and implications:

Drug–drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.
Keywords:oxycodone   oxymorphone   pharmacokinetics   phenotypes   CYP2D6   CYP3A   drug–drug interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号