首页 | 本学科首页   官方微博 | 高级检索  
     

基于Hopfield神经网络模型识别珠海市麻疹点状暴发高风险地区
引用本文:尹锡玲 黄晖 关天姬 方坚锐 李海燕 阮峰. 基于Hopfield神经网络模型识别珠海市麻疹点状暴发高风险地区[J]. 实用预防医学, 2016, 23(3): 374-376
作者姓名:尹锡玲 黄晖 关天姬 方坚锐 李海燕 阮峰
作者单位:广东省珠海市疾病预防控制中心,广东珠海,519000
摘    要:
目的建立Hopfield神经网络模型,对珠海市麻疹点状暴发的发病风险进行综合评估,识别高风险地区.方法 确定发病率,接种率,监测系统运转质量,疫点处置共四大类9项指标,利用矩阵实验室(Matrix Laboratory,Matlab)软件工具箱中的Hopfield神经网络模型进行建模.结果 香洲区麻疹点状暴发疫情风险等级为"极高风险",金湾区为"高风险",斗门区为"低风险".结论 Hopfield神经网络模型可对麻疹疫情风险进行综合评估,初步识别点状暴发的高风险地区.

关 键 词:Hopfield神经网络模型  麻疹  

Identification of high-risk areas for sporadic measles outbreaks based on Hopfield neural network model in Zhuhai
YIN Xi-ling,HUANG Hui,Guan Tian-ji,FANG Jian-rui,LI Hai-yan,RUAN Fen. Identification of high-risk areas for sporadic measles outbreaks based on Hopfield neural network model in Zhuhai[J]. Practical Preventive Medicine, 2016, 23(3): 374-376
Authors:YIN Xi-ling  HUANG Hui  Guan Tian-ji  FANG Jian-rui  LI Hai-yan  RUAN Fen
Affiliation:Zhuhai Municipal for Disease Control and Prevention, Zhuhai Guangdong, 519000, China
Abstract:
Objective Hopfield neural network model was established to assessment the risk of sporadic measles outbreaks and identify high risk areas. Methods 9 indicators were determined as parameters to model the Hopfield neural network using Matrix lab software. The indicators included four types of the incidence, vaccination rate, running quality of measles monitoring system, and disposition of epidemic spot. Results The level of the risk of sporadic measles outbreaks in Xiangzhou District was identified as "extreme high risk". The risk level of Jinwan District, Doumen District was "high risk"and"low risk",respectively. Conclusions Hopfield neural network model could be used to assessment the risk of sporadic measles outbreaks and identify high risk areas preliminarily.
Keywords:Hopfield neural network model   Measles  
本文献已被 CNKI 等数据库收录!
点击此处可从《实用预防医学》浏览原始摘要信息
点击此处可从《实用预防医学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号