首页 | 本学科首页   官方微博 | 高级检索  
     


Agonist-dependent internalization of the human melanocortin-4 receptors in human embryonic kidney 293 cells
Authors:Gao Zhenhai  Lei Dachuan  Welch Julie  Le Kathy  Lin Jie  Leng Song  Duhl David
Affiliation:Small Molecule Drug Discovery, Chiron Corporation, 4560 Horton St., Emeryville, CA 94608-2916, USA.
Abstract:
A chimeric protein comprised of melanocortin-4 receptor (MC4R) and the green fluorescent protein (GFP) was created for studying receptor/ligand localization and trafficking. The ligand binding affinities and second messenger stimulation induced by MC4R-GFP closely resembled those of the wild-type receptor, suggesting functional integrity of the chimeric protein. As observed with a confocal microscope, in human embryonic kidney (HEK)-293 cells MC4R/GFP was distributed evenly along the cell membrane. Addition of [Nle4-d-Phe7]-alpha-melanocyte-stimulating hormone (NDP-MSH), a peptide MC4R agonist, induced receptor translocation into intracellular compartments in a time- and concentration-dependent manner. [Ac-Nle-c[Asp-His-d-Nal(2')-Arg-Trp-Lys]-NH2] (SHU9119), a potent MC4R antagonist, completely inhibited NDP-MSH-mediated internalization. MC4R-GFP internalization was unaffected by a protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89), but was impaired by pretreatment with inhibitors of endocytosis through clathrin-coated pits, hypertonic sucrose, or concanavalin A. Time-dependent colocalization of MC4R-GFP with rhodamine-transferrin, an early endosome marker, and with LysoTraker, a lysosome marker, was observed after short-term (45 min) and prolonged (20 h) agonist exposure, respectively. Rhodamine-[AcNle-c[Asp-His-d-Phe-Arg-Trp-Lys]-NH2] (MTII), a fluorescent derivative of an MC4R agonist, was found to cointernalize with MC4R-GFP into intracellular vesicles. No significant receptor recycling or segregation from the ligand was observed 60 min after removal of the agonist. In contrast, an antagonist rhodamine-Ac-Cys-Glu-His-(d-Nal)-Arg-Trp-Gly-Cys-Pro-Pro-Lys-Asp-NH2 (HS014) bound to and colocalized with MC4R-GFP on the cell surface and did not stimulate receptor internalization. In sum, these results suggest that MC4R is subject to agonist-dependent endocytosis via clathrin-coated pits. Prolonged agonist exposure directs MC4R into lysosomes, possibly for degradation. Receptor and ligand recycling is not efficient for MC4R in HEK-293 cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号