首页 | 本学科首页   官方微博 | 高级检索  
     

遥感图像非监督分类分析江宁县江滩钉螺孳生地植被特征
引用本文:张治英,徐德忠,孙志东,张波,周晓农,周云,龚自力,刘士军. 遥感图像非监督分类分析江宁县江滩钉螺孳生地植被特征[J]. 中华流行病学杂志, 2003, 24(4): 261-264
作者姓名:张治英  徐德忠  孙志东  张波  周晓农  周云  龚自力  刘士军
作者单位:1. 710032,西安,第四军医大学预防医学系流行病学教研室
2. 中国疾病预防控制中心寄生虫病预防控制所
3. 江苏省江宁县血吸虫病防治站
4. 南京军区卫生防疫队
基金项目:全军“十五”指令性课题资助项目( 0 1L0 78)
摘    要:目的:从遥感图像中提取江宁县江潍钉螺孳生地的植被特征。方法:在ERDAS IMAGINE8.5软件支持下,根据LANDSAT7 ETM图像中各波段的光谱特征,选择对植被敏感的2、3、4波段的伪彩色复合图像ETM234进行非监督分类,并通过计算分离率(TD值)对分类效果进行评价;同时将分类结果图与江宁县江滩钉螺孳生地矢量图重叠,提取江宁县江滩钉螺孳生地的植被特征,并分析钉螺在各植被中的分布。结果:通过对ETM234进行非监督分类,可将江宁县江潍地表特征分为包括水、沙滩、裸露地表等非植被区域在内的10种地表类型;对分类分离率评价显示,虽然总体分离率较好(TD=1860),但存在类间的混杂错分。为了进一步提高分类效率,以值被指数为参考滤掉ETM234图像中无植被的像素然后再进行分类,消除了非相邻类间的混杂错分。提取江宁县江滩钉螺孳生地植被类型发现,钉螺孳生地的植被主要为非监督分类的第3(3)、5(C5)、6(C6)三类,且钉螺密度为C3<C5<C6,实地考察显示该三类分别为植被稀疏的滩面、杂草丛及芦苇滩。结论:通过对遥感图像适当分析能将江滩钉螺孳生地的植被种类有效地鉴别出来,有利于对钉螺孳生地的监测,为钉螺的有效防制及血吸虫病的预防提供依据。

关 键 词:血吸虫病 遥感 钉螺 非监督分类
收稿时间:2002-12-23
修稿时间:2002-12-23

Unsupervised classification of remote sensing image analysis of jiangning county river beach oncomelania breeding grounds of vegetation characteristics
Zhang Zhiying,Xu Dezhong,Sun Zhidong,Zhang Bo,Zhou Xiaonong,Zhou Yun,Gong Zili and Liu Shijun. Unsupervised classification of remote sensing image analysis of jiangning county river beach oncomelania breeding grounds of vegetation characteristics[J]. Chinese Journal of Epidemiology, 2003, 24(4): 261-264
Authors:Zhang Zhiying  Xu Dezhong  Sun Zhidong  Zhang Bo  Zhou Xiaonong  Zhou Yun  Gong Zili  Liu Shijun
Affiliation:Department of Epidemiology, Faculty of Prevention Medicine, Fourth Military Medical University, Xi'an 710032, China.
Abstract:Objective To explore the vegetation landscapes in marshland snail habitats using satellite image. Methods The false color composition image from band 2, 3 and 4 of LANDSAT ETM+ images was classified in the ERDAS IMAGINE 8.5 to analyze the vegetation types in the marshland of Jiangning county, using the unsupervised classification. The efficiency of classification was evaluated by the transformed divergence. The overlaid layers of the classified vegetation image and the vector layer of snail habitats distribution were used to analyze the relationship between the snail distribution and the landscape types. Results The land cover of marshland in LANDSAT ETM234 image in Jiangning county could be classified into 10 types, including water, bare soil, sandy and other landscapes while the transformed divergence analysis showed that there were misclassified pixes between some types especially for the non continuous types. The study indicated that through adding the NDVI image in the process of classification efficiency of classification and eliminate misclassification in the non continuous type could be improved. Analysis on the overlaid layer of the vector of snail distribution and the classified image proved that the vegetation covers in marshland snail habitats in Jiangning mainly belonged to type 3, 5 and 6, that responded to the beach with sparse vegetation,exuberant weed and bulrush respectively. The density of snails in the bulrush was higher than that in other 2 landscapes. Conclusion The vegetation type in the marshland snail habitats could be distinguished from the satellite image, which was helpful for the surveillance of snail habitat in marshland and for the prevention of schistosomiasis.
Keywords:Schistosomiasis  Remote sensing  Oncomelenia snail  Unsupervised classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《中华流行病学杂志》浏览原始摘要信息
点击此处可从《中华流行病学杂志》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号