首页 | 本学科首页   官方微博 | 高级检索  
     


Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis
Authors:Ali Jebali  Bahram Kazemi
Affiliation:1. Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran;2. Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran;3. Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract:
Cutaneous leishmaniasis (CL) is endemic in the tropical and subtropical countries. Antileishmanial drugs that are traditionally used for treatment of CL are mainly toxic, ineffective for some parasite isolates, and mostly expensive. Previous studies showed that some metal and metal oxide nanoparticles have antimicrobial activity. Moreover, the use of nanoparticles together with ultra violet (UV) and infra red (IR) light increases toxic effects of nanoparticles by generation of reactive oxygen species (ROSs) and heat, respectively. There is little information on antileishmanial activity of nanoparticles, alone or together with UV/IR. Thus, the purpose of this research was to study antileishmanial effects of some nanoparticles including silver nanoparticles (Ag NPs), gold nanoparticles (Au NPs), titanium dioxide nanoparticles (TiO2 NPs), zinc oxide nanoparticles (ZnO NPs), and magnesium oxide nanoparticles (MgO NPs) on Leishmania major parasites under UV, IR, and dark conditions. After 24 h exposure to nanoparticles, different biological parameters such as cell viability, proliferation, infectivity, and infection index were investigated under UV/IR/dark conditions. In this study, the highest antileishmanial activity was seen for Ag NPs, followed by Au NPs, TiO2 NPs, ZnO NPs, and MgO NPs. Both UV and IR light increased antileishmanial properties of all nanoparticles. In spite of antileishmanial activity of nanoparticles under UV, IR, and dark conditions, these nanoparticles had high cytotoxicity on macrophages, which must be considered in future studies. The authors declare that the use of nanoparticles for treatment of CL may have both positive and negative consequences.
Keywords:Cutaneous leishmaniasis  Nanoparticles  UV  IR
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号