Abstract: | Twelve chemicals from diverse structural classes were tested under code for their capacity to enhance the transformation of Syrian hamster embryo cells by simian adenovirus SA7 in two independent laboratories. Pretreatment of hamster cells with eight of those chemicals (reserpine, dichlorvos, methapyrilene hydrochloride, benzidine dihydrochloride, diphenylhydantoin, cinnamyl anthranilate, 11-amino-undecanoic acid, and 4,4′-oxydianiline) produced repeatable enhancement of SA7 transformation at two or more consecutive dose levels, which constitutes clear evidence of enhancing activity in this assay. Both toxic and nontoxic doses of each of these chemicals caused enhancement of virus transformation. Two chemicals (2,6-dichloro-p-phenylenediamine and cinnamaldehyde) produced some evidence of enhancing activity (repeatable transformation enhancement at one dose). Dose ranges for cytotoxicity and enhancement of SA7 transformation were similar in both laboratories for all chemicals producing activity. The final two chemicals, chloramphenicol sodium succinate and ethylene thiourea, failed to reproducibly demonstrate either significant cytotoxicity or enhancement of SA7 transformation at concentrations up to 10–20 mM. The test results for these 12 chemicals were combined with the test results for 9 known carcinogens and noncarcinogens in order to evaluate relationships between activity, dose response, and lowest effective enhancing concentration for these compounds, as well as to correlate them with rodent carcinogenesis classifications. The Syrian hamster embryo cell-SA7 system demonstrated reproducible test responses in both intra- and interlaboratory studies and detected 13 out of 15 known rodent carcinogens. |