首页 | 本学科首页   官方微博 | 高级检索  
     


Mutational analysis of a highly conserved proline residue in MRP1, MRP2, and MRP3 reveals a partially conserved function.
Authors:Isabelle J Létourneau  Andrew J Slot  Roger G Deeley  Susan P C Cole
Affiliation:Department of Pharmacology and Toxicology, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.
Abstract:
The ATP-binding cassette multidrug resistance protein 1 MRP1 (ABCC1) mediates the cellular efflux of organic anions including conjugated metabolites, chemotherapeutic agents, and toxicants. We previously described a mutation in cytoplasmic loop 7 (CL7) of MRP1, Pro1150Ala, which reduced leukotriene C(4) (LTC(4)) transport but increased 17beta-estradiol 17beta-d-glucuronide (E(2)17betaG) and methotrexate (MTX) transport. Vanadate-induced trapping of [alpha-(32)P]8N(3)ADP by the Pro1150Ala mutant in the absence of substrate was also greatly reduced compared with wild-type MRP1 suggesting an uncoupling of ATP hydrolysis and transport activity. To determine whether the functional importance of MRP1-Pro(1150) is conserved, the analogous Pro(1158) and Pro(1147) residues in the MRP2 and MRP3 transporters, respectively, were mutated to Ala. Expression levels of the three mutants were unaffected; however, the vesicular transport activity of at least one organic anion substrate was significantly altered. As observed for MRP1-Pro1150Ala, LTC(4) transport by MRP2-Pro1158Ala was decreased. However, E(2)17betaG and MTX transport was comparable with that of wild-type MRP2 rather than increased as was observed for MRP1-Pro1150Ala. In the case of MRP3-Pro1147Ala, LTC(4) transport was increased, whereas E(2)17betaG transport was unaffected. MTX transport by MRP3-Pro1147Ala was also increased but to a lesser extent than for MRP1-Pro1150Ala. In contrast, all three mutants showed a marked reduction in levels of vanadate-induced trapped [alpha-(32)P]8N(3)ADP. We conclude that MRP1-Pro(1150), MRP2-Pro(1158), and MRP3-Pro(1147) in CL7 differ in their influence on substrate specificity but share a common role in the nucleotide interactions of these transporters.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号