首页 | 本学科首页   官方微博 | 高级检索  
     

U-Net及其变体在医学图像分割中的应用研究综述
引用本文:黄晓鸣,何富运,唐晓虎,王勋,丘森辉,胡聪. U-Net及其变体在医学图像分割中的应用研究综述[J]. 中国生物医学工程学报, 2022, 41(5): 567-576. DOI: 10.3969/j.issn.0258-8021.2022.05.006
作者姓名:黄晓鸣  何富运  唐晓虎  王勋  丘森辉  胡聪
作者单位:1(广西师范大学 电子工程学院,桂林 541004)2(广西自动检测技术与仪器重点实验室,桂林 541004)3(广西无线宽带通信与信号处理重点实验室,桂林 541004)
基金项目:国家自然科学基金(62062014); 广西自然科学基金(2018GXNSFAA050024,2018GXNSFAA294142)
摘    要:医学图像分割可以为临床诊疗和病理学研究提供可靠的依据,并能辅助医生对病人的病情做出准确的判断。基于深度学习的分割网络的出现解决了传统自动分割方法鲁棒性不强、准确率低等问题。U-Net凭借其出色的性能在众多的分割网络中脱颖而出,研究者以U-Net为基础相继提出了多种改进变体。以U-Net网络及其变体为主线,首先详细介绍U-Net的网络结构及常用改进方法;然后根据分割对象的不同,将U-Net变体网络进一步划分为泛用型分割网络及特定型分割网络,并就其在医学图像分割中的研究进展进行论述;最后,分析了目前研究中工作尚存在的难点与问题,并对今后的发展方向进行展望。

关 键 词:医学图像分割  深度学习  卷积神经网络  U-Net
收稿时间:2021-02-05

Review on Applications of U-Net and its Variants in Medical Image Segmentation
Huang Xiaoming,He Fuyun,Tang Xiaohu,Wang Xun,Qiu Senhui,Hu Cong. Review on Applications of U-Net and its Variants in Medical Image Segmentation[J]. Chinese Journal of Biomedical Engineering, 2022, 41(5): 567-576. DOI: 10.3969/j.issn.0258-8021.2022.05.006
Authors:Huang Xiaoming  He Fuyun  Tang Xiaohu  Wang Xun  Qiu Senhui  Hu Cong
Affiliation:(College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China)(Guangxi Key Laboratory of Automatic Detection Technology and Instrument, Guilin 541004, China)(Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin 541004, China)
Abstract:Medical image segmentation can provide a reliable basis for clinical diagnosis and pathology research and assist doctors to make accurate diagnosis. The emergence of medical image segmentation based on deep learning has solved the problems of low robustness and low accuracy in traditional automatic segmentation methods, among which, U-Net stands out among many segmentation networks with its excellent performance. Researchers have successively proposed a variety of improved variants based on U-Net. Taking U-Net and its network variants as the main content, this article first introduced the network structure and common improvement methods of U-Net in detail. Then, divided the U-Net variants into general-purpose networks and specific network according to the different segmentation objects, and discussed the research progress of these networks in the medical image segmentation. At the end, the difficulties and problems existing in this research field were analyzed, and the development directions were prospected.
Keywords:medical image segmentation  deep learning  convolution neural network  U-Net  
点击此处可从《中国生物医学工程学报》浏览原始摘要信息
点击此处可从《中国生物医学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号