Side population of pancreatic cancer cells predominates in TGF‐β‐mediated epithelial to mesenchymal transition and invasion |
| |
Authors: | Ayano Kabashima Hajime Higuchi Hiromasa Takaishi Yumi Matsuzaki Sadafumi Suzuki Motoko Izumiya Hideko Iizuka Gen Sakai Shigenari Hozawa Toshifumi Azuma Toshifumi Hibi |
| |
Affiliation: | 1. Division of Gastroenterology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan;2. Fax: +81‐3‐3341‐3631.;3. Department of Physiology, Keio University School of Medicine, Tokyo, Japan;4. Laboratory of Molecular Regeneration, Oral Health Science Center, Tokyo Dental College, Chiba, Japan |
| |
Abstract: | We report here side population (SP) cells, a cancer stem cell enriched fraction from pancreatic cancer cell line, have enormous superior potential of the epithelial to mesenchymal transition (EMT), invasion, and metastasis. In an isolated SP cell culture, the cells rapidly expressed and up‐regulated E‐cadherin, an epithelial phenotypic marker, and the cells formed tightly contacted cell cluster, which is a representative epithelial phenotypic appearance. When the SP cells were incubated in the presence of TGF‐β, SP cells changed their shape into mesenchymal‐like appearance including spindle shaped assembly. This alteration was associated with significant reduction of E‐cadherin expression level. TGF‐β induced EMT‐associated gene alteration such as reduction of E‐cadherin mRNA and induction of Snail mRNA and matrixmetalloproteinase (MMP)‐2 mRNA. Finally, SP cells exerted notable matrigel invasion activity in response to TGF‐β treatment, whereas MP cells did not respond to TGF‐β‐mediated invasion. In conclusion, these results suggest that SP cells from pancreatic cancer cell line possess superior potentials of phenotypic switch, i.e., EMT/MET, micro‐invasion, and in vivo metastasis, as compared to MP cells. Because micro‐invasion and metastasis are key mechanisms of cancer malignant potential, SP cells would be the attractive target for preventing cancer progression. © 2008 UICC |
| |
Keywords: | TGF‐beta cancer stem cell invasion metastasis E‐cadherin |
|
|