首页 | 本学科首页   官方微博 | 高级检索  
     


During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level.
Authors:Carsten Lundby  Robert Boushel  Paul Robach  Kirsten M?ller  Bengt Saltin  José A L Calbet
Affiliation:Copenhagen Muscle Research Center, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen ?, Denmark. lundby@idraet.au.dk
Abstract:To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O(2) delivery with O(2) demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 mug (kg body mass)(-1) min(-1)) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 +/- 1.0 versus 7.9 +/- 1.0 l min(-1)) and femoral arterial oxygen delivery (1.2 +/- 0.2 versus 1.3 +/- 0.2 l min(-1); control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 +/- 14.2 versus 83.3 +/- 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 +/- 5.3 to 72.0 +/- 10.2% (P < 0.05), and the corresponding venous O(2) content was increased from 25.5 +/- 10.0 to 46.3 +/- 18.5 ml l(-1) (control and ATP, respectively, P < 0.05). With ATP, leg arterial-venous O(2) difference was decreased (P < 0.05) from 139.3 +/- 9.0 to 116.9 +/- 8.4(-1) and leg .VO(2max) was 20% lower compared to the control trial (1.1 +/- 0.2 versus 0.9 +/- 0.1 l min(-1)) (P = 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O(2) delivery with O(2) demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg .VO(2peak) is not limited by restricted vasodilatation in the altitude-acclimatized human.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号