首页 | 本学科首页   官方微博 | 高级检索  
     


Knock-down of Bcl-2 by antisense oligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis in human PC-3 prostate tumor xenografts
Authors:Anai Satoshi  Goodison Steve  Shiverick Kathleen  Hirao Yoshihiko  Brown Bob D  Rosser Charles J
Affiliation:Department of Urology, College of Medicine, University of Florida, Suite N2-3, P.O. Box 100247, Gainesville, FL, USA.
Abstract:
Expression of the proto-oncogene Bcl-2 is associated with tumor progression. Bcl-2's broad expression in tumors, coupled with its role in resistance to chemotherapy and radiation therapy-induced apoptosis, makes it a rational target for anticancer therapy. Antisense Bcl-2 oligodeoxynucleotide (ODN) reagents have been shown to be effective in reducing Bcl-2 expression in a number of systems. We investigated whether treating human prostate cancer cells with antisense Bcl-2 ODN (G3139, oblimersen sodium, Genasense) before irradiation would render them more susceptible to radiation effects. Two prostate cancer cell lines expressing Bcl-2 at different levels (PC-3-Bcl-2 and PC-3-Neo) were subjected to antisense Bcl-2 ODN, reverse control (CTL), or mock treatment. Antisense Bcl-2 ODN alone produced no cytotoxic effects and was associated with G(1) cell cycle arrest. The combination of antisense Bcl-2 ODN with irradiation sensitized both cell lines to the killing effects of radiation. Both PC-3-Bcl-2 and PC-3-Neo xenografts in mice treated with the combination of antisense Bcl-2 ODN and irradiation were more than three times smaller by volume compared with xenografts in mice treated with reverse CTL alone, antisense Bcl-2 ODN alone, irradiation alone, or reverse CTL plus radiotherapy (P = 0.0001). Specifically, PC-3-Bcl-2 xenograft tumors treated with antisense Bcl-2 ODN and irradiation had increased rates of apoptosis and decreased rates of angiogenesis and proliferation. PC-3-Neo xenograft tumors had decreased proliferation only. This is the first study which shows that therapy directed at Bcl-2 affects tumor vasculature. Together, these findings warrant further study of this novel combination of Bcl-2 reduction and radiation therapy, as well as Bcl-2 reduction and angiogenic therapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号