Human urotensin-II potentiates the mitogenic effect of mildly oxidized low-density lipoprotein on vascular smooth muscle cells: comparison with other vasoactive agents and hydrogen peroxide. |
| |
Authors: | Takuya Watanabe Keiko Takahashi Tomoko Kanome Shigeki Hongo Akira Miyazaki Shinji Koba Takashi Katagiri Rajbabu Pakara Claude R Benedict |
| |
Affiliation: | Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan. watanabemd@med.showa-u.ac.jp |
| |
Abstract: | Human urotensin-II (U-II) is the most potent vasoactive peptide identified to date, and may be involved in hypertension and atherosclerosis. We investigated the effects of the interactions between U-II or other vasoactive agents and mildly oxidized low-density lipoprotein (mox-LDL) or hydrogen peroxide (H2O2) on the induction of vascular smooth muscle cell (VSMC) proliferation. Growth-arrested rabbit VSMCs were incubated with vasoactive agents (U-II, endothelin-1, angiotensin-II, serotonin, or thromboxane-A2) in the presence or absence of mox-LDL or H2O2. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. On interaction with mox-LDL or H2O2, U-II induced the greatest increase in [3H]thymidine incorporation among these vasoactive agents. A low concentration of U-II (10 nmol/l) enhanced the potential mitogenic effect of low concentrations of mox-LDL (120 to 337%) and H2O2 (177 to 226%). U-II at 50 nmol/l showed the maximal mitogenic effect (161%), which was abolished by G protein inactivator (GDP-beta-S), c-Src tyrosine kinase inhibitor (radicicol), protein kinase C (PKC) inhibitor (Ro31-8220), extracellular signal-regulated kinase (ERK) kinase inhibitor (PD98059), or Rho kinase inhibitor (Y27632). Mox-LDL at 5 microg/ml showed the maximal mitogenic effect (211%), which was inhibited by free radical scavenger (catalase), intracellular and extracellular antioxidants (N-acetylcysteine and probucol), nicotinamide adenine dinucleotide phosphate oxidase inhibitor (diphenylene iodonium), or c-Jun N-terminal kinase (JNK) inhibitor (SP600125). These results suggested that U-II acts in synergy with mox-LDL in inducing VSMC DNA synthesis at the highest rate among these vasoactive agents. Activation of the G protein/c-Src/PKC/ERK and Rho kinase pathways by U-II together with the redox-sensitive JNK pathway by mox-LDL may explain the synergistic interaction between these agents. |
| |
Keywords: | |
|
|