首页 | 本学科首页   官方微博 | 高级检索  
     


TMS-evoked long-lasting artefacts: A new adaptive algorithm for EEG signal correction
Authors:Elias P. Casula  Alessandra Bertoldo  Vincenza Tarantino  Michele Maiella  Giacomo Koch  John C. Rothwell  Gianna M. Toffolo  Patrizia S. Bisiacchi
Affiliation:1. Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Rome, Italy;2. Department of General Psychology, University of Padua, Padua, Italy;3. Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, United Kingdom;4. Department of Information Engineering, University of Padua, Padua, Italy
Abstract:

Objective

During EEG the discharge of TMS generates a long-lasting decay artefact (DA) that makes the analysis of TMS-evoked potentials (TEPs) difficult. Our aim was twofold: (1) to describe how the DA affects the recorded EEG and (2) to develop a new adaptive detrend algorithm (ADA) able to correct the DA.

Methods

We performed two experiments testing 50 healthy volunteers. In experiment 1, we tested the efficacy of ADA by comparing it with two commonly-used independent component analysis (ICA) algorithms. In experiment 2, we further investigated the efficiency of ADA and the impact of the DA evoked from TMS over frontal, motor and parietal areas.

Results

Our results demonstrated that (1) the DA affected the EEG signal in the spatiotemporal domain; (2) ADA was able to completely remove the DA without affecting the TEP waveforms; (3). ICA corrections produced significant changes in peak-to-peak TEP amplitude.

Conclusions

ADA is a reliable solution for the DA correction, especially considering that (1) it does not affect physiological responses; (2) it is completely data-driven and (3) its effectiveness does not depend on the characteristics of the artefact and on the number of recording electrodes.

Significance

We proposed a new reliable algorithm of correction for long-lasting TMS-EEG artifacts.
Keywords:TMS  transcranial magnetic stimulation  EEG  electroencephalography  DA  decay artefact  ADA  adaptive detrend algorithm  MEP  motor-evoked potential  TEP  TMS-evoked potential  MFG  middle frontal gyrus  M1  primary motor cortex  IPS  inferior parietal sulcus  ICA  independent component analysis  RMT  resting motor threshold  FDI  first dorsal interosseous  GMFP  global mean field power  TRSP  TMS-related spectral perturbation  TOI  time window of interest  TMS  EEG  Artefact  ICA  Detrend
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号