首页 | 本学科首页   官方微博 | 高级检索  
     


Application of intelligent algorithms in Down syndrome screening during second trimester pregnancy
Authors:Hong-Guo Zhang  Yu-Ting Jiang  Si-Da Dai  Ling Li  Xiao-Nan Hu  Rui-Zhi Liu
Affiliation:Hong-Guo Zhang, Yu-Ting Jiang, Xiao-Nan Hu, Rui-Zhi Liu, Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun 130021, Jilin Province, ChinaSi-Da Dai, Ling Li, College of Communication Engineering, Jilin University, Changchun 130012, Jilin Province, China
Abstract:
BACKGROUNDDown syndrome (DS) is one of the most common chromosomal aneuploidy diseases. Prenatal screening and diagnostic tests can aid the early diagnosis, appropriate management of these fetuses, and give parents an informed choice about whether or not to terminate a pregnancy. In recent years, investigations have been conducted to achieve a high detection rate (DR) and reduce the false positive rate (FPR). Hospitals have accumulated large numbers of screened cases. However, artificial intelligence methods are rarely used in the risk assessment of prenatal screening for DS.AIMTo use a support vector machine algorithm, classification and regression tree algorithm, and AdaBoost algorithm in machine learning for modeling and analysis of prenatal DS screening.METHODSThe dataset was from the Center for Prenatal Diagnosis at the First Hospital of Jilin University. We designed and developed intelligent algorithms based on the synthetic minority over-sampling technique (SMOTE)-Tomek and adaptive synthetic sampling over-sampling techniques to preprocess the dataset of prenatal screening information. The machine learning model was then established. Finally, the feasibility of artificial intelligence algorithms in DS screening evaluation is discussed.RESULTSThe database contained 31 DS diagnosed cases, accounting for 0.03% of all patients. The dataset showed a large difference between the numbers of DS affected and non-affected cases. A combination of over-sampling and under-sampling techniques can greatly increase the performance of the algorithm at processing non-balanced datasets. As the number of iterations increases, the combination of the classification and regression tree algorithm and the SMOTE-Tomek over-sampling technique can obtain a high DR while keeping the FPR to a minimum. CONCLUSIONThe support vector machine algorithm and the classification and regression tree algorithm achieved good results on the DS screening dataset. When the T21 risk cutoff value was set to 270, machine learning methods had a higher DR and a lower FPR than statistical methods.
Keywords:Down syndrome   Prenatal screening   Algorithms   Classification and regression tree   Support vector machine   Risk cutoff value
点击此处可从《World Journal of Clinical Cases》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号