aSchool of Pharmaceutical Sciences, University of Geneva, 30, Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
bCentre interuniversitaire de recherche et d’enseignement, “Pharmapeptides”, Site d’Archamps, F-74160 Archamps, France
Abstract:
The objective of this study was to investigate the effect of amino acid sequence on the transdermal delivery of peptides by iontophoresis. Structurally related, cationic tripeptides based on the residues at positions (i) 6–8 in LHRH (Ac-X-Leu-Arg-NH2) and (ii) 3–5 in octreotide (Ac-X-dTrp-Lys-NH2) were studied. Iontophoretic transport experiments were conducted using porcine skin in vitro to investigate the dependence of flux on peptide concentration. Co-iontophoresis of acetaminophen enabled deconvolution of the contributions of electromigration (EM) and electroosmosis (EO) and the calculation of an electroosmotic inhibition factor (IF). A two-fold increase in donor peptide concentration increased iontophoretic flux for most peptides, and electroosmotic inhibition for dNal-containing tripeptides. The improvement in transport and the impact on the EM and EO components were peptide-specific. A reduction in the number of competing ions in the formulation significantly increased transport and, specifically, the EM contribution; it also increased IF of compounds with a propensity to interact with the membrane. No monotonic dependence of flux on either molecular weight or lipophilicity was observed. Iontophoretic peptide transport could not be rationalized in terms of either peptide molecular weight or computational 2D estimates of lipophilicity. Data suggest that a more complex three-dimensional approach is required to develop structure permeation relationships governing iontophoretic peptide delivery.