首页 | 本学科首页   官方微博 | 高级检索  
     

认知负载状态下的精神分裂症患者脑电图特异性研究
引用本文:杜欣,李嘉慧,熊冬生,潘智林,吴逢春,宁玉萍,陈军,吴凯. 认知负载状态下的精神分裂症患者脑电图特异性研究[J]. 生物医学工程学杂志, 2020, 0(1): 45-53
作者姓名:杜欣  李嘉慧  熊冬生  潘智林  吴逢春  宁玉萍  陈军  吴凯
作者单位:华南理工大学材料科学与工程学院生物医学工程系;广东省精神疾病转化医学工程技术研究中心;广州市惠爱医院广州医科大学附属脑科医院;广东省老年痴呆诊断与康复工程技术研究中心;国家医疗保健器具工程技术研究中心
基金项目:国家自然科学基金(31771074,81802230);广东省科技计划前沿与关键技术创新专项资金(2016B010108003);广东省科技计划公益研究与能力建设专项资金(2016A020216004);广东省协同创新与平台环境建设专项资金(2017A040405059);广东省科技重点领域研发计划项目(2018B030335001);广州市产学研协同创新重大专项(201604020170,201704020168,201704020113,201807010064,201803010100,201903010032)
摘    要:认知功能损害是精神分裂症的三大原发症状之一,在疾病早期发现和高危人群风险预警等方面具有重要价值。为了研究精神分裂症患者在认知负载状态下的脑电图特异性,本试验收集17例精神分裂症患者和19例健康受试者的脑电信号作为对照,基于小波变换提取各频段信号,计算非线性动力学及脑功能网络属性等特征,并利用机器学习算法将两类人群进行自动分类分析。试验结果表明,两组受试者在认知负载状态下,Fp1和Fp2导联在α、β、θ、γ这4个频带的关联维数和样本熵的差异均具有统计学意义,提示大脑额叶功能损伤是精神分裂症认知功能损害的重要原因。进一步基于机器学习的自动分类分析结果表明,将非线性动力学与脑功能网络属性相结合作为分类器的输入特征,所得分类效果最优,其结果显示准确率为76.77%、敏感度为72.09%、特异性为80.36%。本研究结果表明,脑电信号的非线性动力学和脑功能网络属性等特征,或可作为精神分裂症早期筛查和辅助诊断的潜在生物标记物。

关 键 词:精神分裂症  认知功能损害  脑电图  脑功能网络  机器学习

Research on electroencephalogram specifics in patients with schizophrenia under cognitive load
DU Xin,LI Jiahui,XIONG Dongsheng,PAN Zhilin,WU Fengchun,NING Yuping,CHEN Jun,WU Kai. Research on electroencephalogram specifics in patients with schizophrenia under cognitive load[J]. Journal of biomedical engineering, 2020, 0(1): 45-53
Authors:DU Xin  LI Jiahui  XIONG Dongsheng  PAN Zhilin  WU Fengchun  NING Yuping  CHEN Jun  WU Kai
Affiliation:(Department of Biomedical Engineering,School of Material Science and Engineering,South China University of Technology,Guangzhou 510006,P.R.China;Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,Guangzhou 510370,P.R.China;Guangzhou Huiai Hospital,The Affiliated Brain Hospital of Guangzhou Medical University,Guangzhou 510370,P.R.China;Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia,Guangzhou 510500,P.R.China;National Engineering Research Center for Healthcare Devices,Guangzhou 510500,P.R.China)
Abstract:Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals.To study the specifics of electroencephalogram(EEG)in patients with schizophrenia under the cognitive load,we collected EEG signals from 17 schizophrenic patients and 19 healthy controls,extracted signals of each band based on wavelet transform,calculated the characteristics of nonlinear dynamic and functional brain networks,and automatically classified the two groups of people by using a machine learning algorithm.Experimental results indicated that the correlation dimension and sample entropy showed significant differences inα,β,θ,andγrhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load.These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients.Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance,with the accuracy of 76.77%,sensitivity of 72.09%,and specificity of 80.36%.The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.
Keywords:schizophrenia  cognitive impairment  electroencephalogram  functional brain network  machine learning
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号