首页 | 本学科首页   官方微博 | 高级检索  
     


Endocrinological effects of mirtazapine in healthy volunteers
Authors:Schüle Cornelius  Baghai Thomas  Bidlingmaier Martin  Strasburger Christian  Laakmann Gregor
Affiliation:

a Psychiatric Hospital, University of Munich, Munich, Germany

b Neuroendocrine Unit, Department of Internal Medicine, University of Munich, Munich, Germany

Abstract:Objective: Unlike other antidepressants, mirtazapine does not inhibit the reuptake of norepinephrine or serotonin (5-HT) but acts as an antagonist at presynaptic 2-receptors and at postsynaptic 5-HT2, 5-HT3 and histamine H1-receptors. In the present investigation, the influence of acute oral administration of 15-mg mirtazapine on the cortisol (COR), adrenocorticotropin (ACTH), growth hormone (GH) and prolactin (PRL) secretion was examined in 12 healthy male subjects, compared to placebo. Methods: After insertion of an intravenous catheter, both the mean arterial blood pressure (MAP) and the heart rate were recorded and blood samples were drawn 1 h prior to the administration of mirtazapine or placebo (7:00 a.m.), at time of administration (8:00 a.m.) and during 5 h thereafter in periods of 30 min. Concentrations of COR, ACTH, GH and PRL were measured in each blood sample by double antibody radioimmunoassay and chemiluminescence immunoassay methods. The area under the curve (AUC; 0–300 min after mirtazapine or placebo administration) was used as parameter for the COR, ACTH, GH and PRL response. Furthermore, the urinary free cortisol excretion (UFC) was determined beginning at 8:00 a.m. (time of administration of placebo or mirtazapine) up to 8:00 a.m. the day after. Results: Two-sided t-tests for paired samples revealed significantly lower COR AUC, ACTH AUC, UFC and PRL AUC values after 15-mg mirtazapine compared to placebo, whereas no significant differences were found with respect to GH AUC, MAP and heart rate. Conclusions: Since the acute inhibition of COR secretion in the healthy volunteers was paralleled by a simultaneous decrease of ACTH release, central mechanisms (e.g., inhibition of hypothalamic corticotropin releasing hormone (CRH) output) are suggested to be responsible for the inhibitory effects of mirtazapine on COR secretion. Our results are of particular interest in the light of the hypercortisolism observed in depressed patients and new pharmacological approaches such as CRH1 receptor antagonists.
Keywords:ACTH   Cortisol   Growth hormone   Mirtazapine   Prolactin
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号