首页 | 本学科首页   官方微博 | 高级检索  
     

径向基人工神经网络在宫颈细胞图像识别中的应用
引用本文:何苗,蒋本铁,李建华,付志民,范玉,周宝森. 径向基人工神经网络在宫颈细胞图像识别中的应用[J]. 中国医科大学学报, 2006, 35(1): 79-81
作者姓名:何苗  蒋本铁  李建华  付志民  范玉  周宝森
作者单位:1. 中国医科大学附属第一医院计算机室,辽宁,沈阳,110001
2. 东北大学计算机中心
3. 中国医科大学基础医学院病理学教研室
4. 北京新顺国际有限公司
5. 中国医科大学公共卫生学院流行病学教研室
摘    要:目的:探讨径向基(RBF)人工神经网络在宫颈细胞图像识别中的应用。方法:提取宫颈细胞和细胞核的15个形态学特征参数及12个色度学特征参数,对700个宫颈细胞按正常、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)、宫颈癌进行分类识别。利用软件STATISTICA7.0建立网络模型并训练,用VC++.NET语言调用网络。结果:RBF网络对训练集的拟合度为97.3%,对测试集的分类准确率为95.4%。在测试集中,正常细胞的识别率为96%,LSIL细胞识别率为94%,HSIL细胞识别率为100%,癌细胞识别率为88%。RBF网络输入参数的敏感度排序与细胞病理学特征基本一致。结论:RBF人工神经网络可以很好的对宫颈细胞特别是HSIL细胞进行分类识别。

关 键 词:径向基  人工神经网络  计算机辅助诊断
文章编号:0258-4646(2006)01-0079-03
收稿时间:2005-09-12
修稿时间:2005-09-12

Application of radial basis function artificial neural network in image diagnosis of cervical cells
HE Miao,JIANG Ben-tie,LI Jian-hua,FU Zhi-min,FAN Yu,ZHOU Bao-sen. Application of radial basis function artificial neural network in image diagnosis of cervical cells[J]. Journal of China Medical University, 2006, 35(1): 79-81
Authors:HE Miao  JIANG Ben-tie  LI Jian-hua  FU Zhi-min  FAN Yu  ZHOU Bao-sen
Affiliation:1. Computer Center, The First Affiliated Hospital, China Medical University, Shenyang 110001, China; 2. Computing Center, Northeastern University; 3. Department of Pathology, College of Basic Medical Sciences, China Medical University; 4. Xinshun International Co. Ltd. , Beijing; 5. Department of Epidemiology, College of Public Health, China Medical University
Abstract:Objective: To investigate the possibility of applying artificial neural network based on radial basis function(RBF) to image recognition of cervical cells.Methods:According to 15 morphologic parameters and 12 chromatic parameters of cervical cells,700 cervical cells were classified as normal cells,low-grade squamous intraepithelial lesion(LSIL) cells,high-grade squamous intraepithelial lesion(HSIL) cells,and cervical cancer cells.STATISTICA 7.0 was used to establish and train the neural network model,and VC++.NET was used to call the model.Results:The goodness of fit of the neural network model in training set was 97.3%,and the classification accuracy in testing set was 95.4%.In testing set,the recognition rate was 96% in normal cells,94% in LSIL cells,100% in HSIL cells,and 88% in cervical cancer cells.The sensitivity order of input parameters in the RBF artificial neural network was approximately consistent with that of characteristics of cell pathology.Conclusion:Cervical cancer cells,especially HSIL cells,can be well recognized by RBF artificial neural networks.RBF neural network can be widely applied in computer aided diagnosis.
Keywords:radial base funtion   artificial neural network   computer aided diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号