首页 | 本学科首页   官方微博 | 高级检索  
     

骨髓间质干细胞复合多孔磷酸钙陶瓷修复兔颅骨缺损的研究
引用本文:薄斌,王常勇,郭希民,赵强,段翠密,王永红,张旭辉,卢建熙. 骨髓间质干细胞复合多孔磷酸钙陶瓷修复兔颅骨缺损的研究[J]. 中国修复重建外科杂志, 2003, 17(4): 335-338
作者姓名:薄斌  王常勇  郭希民  赵强  段翠密  王永红  张旭辉  卢建熙
作者单位:1. 军事医学科学院基础医学研究所组织工程研究中心,北京,100850
2. 法国地中海大学生物材料与生物技术研究所
基金项目:国家高技术研究发展计划 (863计划 )资助项目(2 0 0 1 AA2 1 60 31 ),北京市“ 2 4 8”工程重大创新资助项目(H0 1 0 2 1 0 1 90 1 2 3),北京市科技计划重大资助项目 (H0 2 0 92 0 0 50 0 31 )
摘    要:目的探讨以骨髓间质干细胞(MSCs)作为种子细胞、β-磷酸三钙(β-TCP)多孔生物陶瓷作为支架材料构建组织工程化人工骨,修复兔实验性颅骨标准缺损的可行性。方法选择5月龄新西兰大白兔34只,制作颅骨标准缺损后分成3组。A组(n=20):分离培养兔同胎异体MSCs。体外扩增后接种到预制的β-TCP多孔生物陶瓷材料上,细胞-材料复合体经体外孵育后,无菌条件下植入颅骨缺损;B组(n=10):采用单纯β-TCP材料修复兔颅骨缺损;C组(n=4):兔实验性颅骨标准缺损区未做骨修复。术后6周和12周分别处死动物、取材,进行缺损区大体、组织学、组织化学和免疫组织化学分析。结果颅骨缺损处A组术后6周表面肉眼可见骨样组织形成,组织学提示材料部分降解,未降解吸收的材料孔洞内广泛分布着新生骨组织,成骨细胞外基质丰富,I型胶原染色阳性;术后12周,支架材料几乎完全降解,缺损区被新生骨组织所取代。B组术后6周,可见从缺损区边缘有新生骨组织向支架材料内长入,支架材料部分吸收;术后12周,可见从缺损区边缘长入到支架材料内的新生骨组织逐渐增多,但材料的中心部位未发现新生骨形成。C组术后12周,仅见少量骨组织从缺损区边缘向缺损区内长入,缺损中央大部分区域未得到修复。结论体外培养扩增的兔MSCs在不添加外源性生长因子的情况下,与pTCP复合植入后可以在体内诱导、分化为成骨细胞,并能够对标准的颅骨缺损进行有效的修复,可进一步推广应用。

关 键 词:颅骨缺损 骨髓间质干细胞 多孔磷酸钙陶瓷 修复 组织工程骨
修稿时间:2002-07-29

REPAIR OF CRANIAL DEFECTS WITH BONE MARROW DERIVED MESENCHYMAL STEM CELLS AND β-TCP SCAFFOLD IN RABBITS
BO Bin,WANG Chang yong,GUO Xi min,et al.. REPAIR OF CRANIAL DEFECTS WITH BONE MARROW DERIVED MESENCHYMAL STEM CELLS AND β-TCP SCAFFOLD IN RABBITS[J]. Chinese journal of reparative and reconstructive surgery, 2003, 17(4): 335-338
Authors:BO Bin  WANG Chang yong  GUO Xi min  et al.
Affiliation:Tissue Engineering Research Center, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P. R. China, 100850.
Abstract:OBJECTIVE: To determine whether culture expanded bone marrow derived mesenchymal stem cells (MSCs) in combination with beta-tricalcium phosphate(beta-TCP) can repair critical cranial defects in New Zealand rabbits. METHODS: In group A(n = 20), MSCs from homogeneous rabbits were isolated and expanded in vitro and then implanted onto the pre-molded porous beta-TCP. The MSCs-beta-TCP complexes were implanted into rabbit critical cranial defects. In group B (n = 10), The defects were repaired with beta-TCP only. In group C(n = 4), the defects were left un-repaired. Samples were extracted 6 and 12 weeks after operation for histological, histochemical and immunohistochemical analysis. RESULTS: In group A, bone-like tissue formation could be seen on the surface of the implants. Microscopic analysis demonstrated certain degradation of beta-TCP and extensive new bone filling in rich extracellular matrix after 6 weeks. The cells were stained positively for type I collagen. After 12 weeks, the bioceramics had almost completely degraded and abundant bone formation could be seen in the whole defects. In group B, marginal bone ingrowth was observed after 6 weeks and the number of osteoblasts increased significantly after 12 weeks. However, no new bone formation could be detected in the middle of the material. In group C, only a small quantity of new bone formation was found along the margin of defects. CONCLUSION: Transplantation of MSCs with beta-TCP can serve as an example of a cell-based treatment for bone regeneration in skeletal defects.
Keywords:Tissue engineering bone Mesenchymal stem cells Bioceramics Cranial defects Repair
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号