首页 | 本学科首页   官方微博 | 高级检索  
     


Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart
Authors:Warren Mark  Guha Prabal K  Berenfeld Omer  Zaitsev Alexey  Anumonwo Justus M B  Dhamoon Amit S  Bagwe Suveer  Taffet Steven M  Jalife José
Affiliation:SUNY Upstate Medical University, Syracuse, New York 13210, USA.
Abstract:
INTRODUCTION: Stable high-frequency rotors sustain ventricular fibrillation (VF) in the guinea pig heart. We surmised that rotor stabilization in the left ventricle (LV) and fibrillatory conduction toward the right ventricle (RV) result from chamber-specific differences in functional expression of inward rectifier (Kir2.x) channels and unequal IK1 rectification in LV and RV myocytes. Accordingly, selective blockade of IK1 during VF should terminate VF. METHODS AND RESULTS: Relative mRNA levels of Kir2.x channels were measured in LV and RV. In addition, LV (n = 21) and RV (n = 20) myocytes were superfused with BaCl2 (5-50 micromol/L) to study the effects on IK1. Potentiometric dye-fluorescence movies of VF were obtained in the presence of Ba2+ (0-50 micromol/L) in 23 Langendorff-perfused hearts. Dominant frequencies (DFs) were determined by spectral analysis, and singularity points were counted in phase maps to assess VF organization. mRNA levels for Kir2.1 and Kir2.3 were significantly larger in LV than RV. Concurrently, outward IK1 was significantly larger in LV than RV myocytes. Ba2+ decreased IK1 in a dose-dependent manner (LV change > RV change). In baseline control VF, the fastest DF domain (28-40 Hz) was located on the anterior LV wall and a sharp LV-to-RV frequency gradient of 21.2 +/- 4.3 Hz was present. Ba2+ significantly decreased both LV frequency and gradient, and it terminated VF in a dose-dependent manner. At 50 micromol/L, Ba2+ decreased the average number of wavebreaks (1.7 +/- 0.9 to 0.8 +/- 0.6 SP/sec x pixel, P < 0.05) and then terminated VF. CONCLUSION: The results strongly support the hypothesis that IK1 plays an important role in rotor stabilization and VF dynamics.
Keywords:rotors    Kir2.1    Kir2.3    optical mapping    fibrillatory conduction    ventricular fibrillation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号