Autonomous replication sequences in the maxicircle kinetoplast DNA of Leishmania tarentolae |
| |
Authors: | D Hughes L Simpson P S Kayne N Neckelmann |
| |
Affiliation: | Department of Biology and Molecular Biology Institute, University of California, 405 Hilgard Ave., Los Angeles, CA 90024, U.S.A. |
| |
Abstract: | Four fragments from the maxicircle DNA of Leishmania tarentolae cloned into the selectable Saccharomyces cerevisiae shuttle vector, YIp5, exhibited autonomous replicating sequence (ars) activity. Two of the fragments (pSK120, pSK152) produced large yeast transformant colonies and two (pSK30, pSK150) produced small colonies. All yeast transformants contained extrachromosomal self replicating YIp5 hybrid plasmids as shown by mitotic instability in non selective medium and by the transformation of Escherichia coli with yeast minilysates and recovery of the plasmid from the transformed bacteria. The copy numbers of pSK30, pSK150 and pSK152 in the transformed yeast were approximately the same as that of the YRp12 control, which contains the yeast arsl element; the copy number of pSK120, however, was at least 10 fold lower. A 1.87 kb subfragment of the pSK120 fragment also showed strong ars activity. The entire DNA sequences of the pSK120, pSK152 and pSK150 fragments are known, and several yeast 11 mer consensus ars sequences are present within each fragment. In addition there is a sequence (Lt ars 189) within the pSK152 subclone that has 78% similarity with a 189 nt sequence of an ars element from the Crithidia fasciculata maxicircle (Cf ars 189), implying an evolutionary conservation of this putative origin of replication in at least two different kinetoplastid species. The relative positions of the Lt ars 189 sequence in the L. tarentolae maxicircle map and the Cf ars 189 sequence in the C. fasciculata map with respect to the 9 and 12 S ribosomal genes are similar, implying an overall conservation of gene order in this portion of the transcribed regions of these two species and perhaps in all kinetoplastid species. |
| |
Keywords: | Origin of replication Maxicircle DNA Kinetoplast DNA Autonomous replicating sequence ars autonomous replicating sequence kDNA kinetoplast DNA kb kilobase pairs nt nucleotide pair |
本文献已被 ScienceDirect 等数据库收录! |
|