首页 | 本学科首页   官方微博 | 高级检索  
     


Postnatal growth and bone mass in mice with IGF-I haploinsufficiency
Authors:He Jianing  Rosen Clifford J  Adams Douglas J  Kream Barbara E
Affiliation:

aDepartment of Medicine, The University of Connecticut Health Center, Farmington, CT 06030-1850, USA

bThe Jackson Laboratory, Bar Harbor, ME 04401, USA

cDepartment of Orthopaedic Surgery, The University of Connecticut Health Center, Farmington, CT 06030, USA

dDepartment of Genetics and Developmental Biology, The University of Connecticut Health Center, Farmington, CT 06030, USA

Abstract:
We examined the influence of IGF-I haploinsufficiency on growth, bone mass and osteoblast differentiation in Igf1 heterozygous knockout (HET) mice. Cohorts of male and female wild type (WT) and HET mice in the outbred CD-1 background were analyzed at 1, 2, 4, 8, 12, 15 and 18 months of age for body weight, serum IGF-I and bone morphometry. Compared to WT mice, HET mice had 20–30% lower serum IGF-I levels in both genders and in all age groups. Female HET mice showed significant reductions in body weight (10–20%), femur length (4–6%) and femoral bone mineral density (BMD) (7–12%) before 15 months of age. Male HET mice showed significant differences in all parameters at 2 months and thereafter. At 8 and 12 months, WT mice also showed a significant gender effect: despite their lower body weight, female mice had higher femoral BMD and femur length compared to males. Microcomputed tomography showed a significant reduction in cortical bone area (7–20%) and periosteal circumference (5–13%) with no consistent pattern of change in trabecular bone measurements in 2- and 8-month old HET mice in both genders. HET primary osteoblast cultures showed a 40% reduction in IGF-I protein expression and a 50% decrease in IGF-I mRNA expression. Cell growth and proliferation were decreased in HET cultures. Thus, IGF-I haploinsufficiency in outbred male and female mice resulted in reduced body weight, femur length and areal BMD at most ages. Serum IGF-I levels showed a high level of positive correlation with body weight and skeletal morphometry. These studies show that IGF-I is a determinant of bone size and mass in postnatal life. We speculate that impaired osteoblast proliferation may contribute to the skeletal phenotype of mice with IGF-I haploinsufficiency.
Keywords:Insulin-like growth factor I   Bone mass   Bone morphometry   Postnatal growth   Osteoblast
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号