首页 | 本学科首页   官方微博 | 高级检索  
     


Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery.
Authors:Sarah L Tao  Michael W Lubeley  Tejal A Desai
Affiliation:Department of Bioengineering, University of Illinois, Chicago 60607, USA.
Abstract:
Oral delivery is the preferred route of drug administration. However, the breakdown of molecules and low levels of absorption in the gastrointestinal system render the oral delivery of proteins and peptides ineffective. Bioadhesive delivery devices can be used to circumvent these problems by protecting the drug from gastrointestinal denaturation, localizing and prolonging a drug at a specific target site, and maintaining direct contact with the intestinal cells, thereby increasing the drug concentration gradient. Microfabrication technology may offer some potential advantages over conventional delivery technologies. The benefits of microfabrication include the ability to tailor the size, shape, reservoir volume, and surface characteristics of the drug delivery vehicle. In this study, bioadhesive properties were introduced to microfabricated poly(methyl methacrylate) (PMMA) microdevices by attachment of lectins, a group of proteins capable of specifically targeting cells in the gastrointestinal tract. In this process, the PMMA microdevices were chemically modified by aminolysis to yield amine-terminated surfaces. Avidin molecules were covalently bound to the surface of the particles using a hydroxysuccinimide catalyzed carbodiimide reagent and then incubated in an aqueous solution of biotinylated lectin. The lectin-modified microdevices were examined in vitro in terms of their bioadhesive characteristics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号