首页 | 本学科首页   官方微博 | 高级检索  
     


Catechol estrogen metabolites and conjugates in different regions of the prostate of Noble rats treated with 4-hydroxyestradiol: implications for estrogen-induced initiation of prostate cancer
Authors:Cavalieri Ercole L  Devanesan Prabu  Bosland Maarten C  Badawi Alaa F  Rogan Eleanor G
Affiliation:Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA. ecavaalie@unmc.edu
Abstract:
Prostate carcinomas arise in 100% of Noble rats treated with estradiol and testosterone. We hypothesize that estrogens initiate prostate cancer mainly by formation of 4-catechol estrogens (CE), followed by their oxidation to catechol estrogen-3,4-quinones (CE-3,4-Q), which can react with DNA. To avoid cancer initiation, CE can be detoxified by catechol-O-methyltransferase (COMT), and CE-3,4-Q by conjugation with glutathione (GSH) or by reduction to CE, catalyzed by quinone reductase and/or cytochrome P450 reductase. To investigate the prostatic metabolism of estrogens, Noble rats were treated with the CE 4-hydroxyestradiol (4-OHE2) or estradiol-3,4-quinone (E2-3,4-Q), and CE metabolites and conjugates were analyzed in the four regions of the prostate, which differ in susceptibility to carcinoma formation. Following treatment of rats with 4-OHE2 (6 micromol/100 g body weight in 200 microl of trioctanoin/dimethylsulfoxide (4:1) by intraperitoneal injection) for 90 min, the non-susceptible ventral (VP) and anterior (AP) prostate had higher levels of 4-methoxyCE and GSH conjugates than the susceptible dorsolateral prostate (DLP) and periurethral prostate (PUP). After treatment with the same molar amount of E2-3,4-Q, the VP and AP contained more GSH conjugates, 4-CE and 4-methoxyCE than the susceptible DLP and PUP. These results suggest that prostate areas susceptible to carcinoma induction have less protection by COMT, GSH, and quinone reductase and/or cytochrome P450 reductase, favoring reaction of CE-3,4-Q with DNA, presumably to initiate cancer.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号