首页 | 本学科首页   官方微博 | 高级检索  
     

基于双树复小波变换和频域U-Net的多光谱图像融合算法
引用本文:李建飞,陈春晓,王亮. 基于双树复小波变换和频域U-Net的多光谱图像融合算法[J]. 生物医学工程研究, 2020, 39(2): 145-150
作者姓名:李建飞  陈春晓  王亮
作者单位:南京航空航天大学生物医学工程系,南京211106;南京航空航天大学生物医学工程系,南京211106;南京航空航天大学生物医学工程系,南京211106
摘    要:
提出基于双树复小波变换(dual-tree complex wavelet transform,DTCWT)和频域U-Net的多光谱图像融合算法。通过将彩色图像和基于荧光示踪剂标记肿瘤等研究目标的荧光图像进行DTCWT分解,获取源图像的高低频分量,利用频域U-Net对荧光图像的低频子带进行处理,分割得到只包含目标区域分布的感兴趣区域。基于感兴趣区域对将荧光图像的高低频子带以低频加权相加、高频取绝对值较大者的融合规则与彩色图像绿色通道融合,并经过DTCWT逆变换重构得到多光谱融合图像。实验表明,本研究提出的多光谱图像融合方法相较于传统融合算法具有更高的空间频率、结构相似性、互信息以及边缘信息保持度,突出了目标区域特征,提高了融合图像的显示效果。

关 键 词:多光谱图像融合  近红外荧光图像  双树复小波变换  卷积神经网络  频域U-Net

Fusion algorithm of multi-spectral images based on dual-tree complex wavelet transform and frequency-domain U-Net
LI Jianfei,CHEN Chunxiao,WANG Liang. Fusion algorithm of multi-spectral images based on dual-tree complex wavelet transform and frequency-domain U-Net[J]. Journal Of Blomedical Englneerlng Research, 2020, 39(2): 145-150
Authors:LI Jianfei  CHEN Chunxiao  WANG Liang
Affiliation:(Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)
Abstract:
We proposed a novel multi-spectral image fusion algorithm for image fusion based on dual-Tree complex wavelet transform(DTCWT)and U-Net.The color images and near-infrared fluorescence images of tumors or other targets markde probes were processed by DTCWT to acquire high and low frequency information of input images,then obtained the target region contained regions of interests which were created by frequency-domain U-Net.The components with different frequency of fluorescence images and green channel of color images were combined by different rules.At last,IDTCW was applied to reconstruct the fused image.The experiments show that the algorithm outperforms traditional fusion methods on spatial frequency,structural similarity,mutual information and QABF and highlights the characteristics of targets to improve visual effect ofthe fused image.
Keywords:Multi-spectral image fusion  Near-infrared fluorescence image  Dual-tree complex wavelet transform  Convolutional neural network  Frequency-domain U-Net
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号