首页 | 本学科首页   官方微博 | 高级检索  
     


Subthalamic nucleus lesions alter basal and dopamine agonist stimulated electrophysiological output from the rat basal ganglia
Authors:Zahr Natalie May  Martin Lynn Pauline  Waszczak Barbara Lee
Affiliation:Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, USA.
Abstract:The subthalamic nucleus (STN) is an important link in the "indirect" striatal efferent pathway. To assess its role on basal ganglia output via the substantia nigra pars reticulata (SNr), we monitored the single unit activities of SNr neurons in chloral hydrate-anesthetized rats 5-8 days after bilateral kainic acid lesions (0.75 microg/0.3 microl/side) of the STN. Consistent with loss of an excitatory input, the average basal firing rate of SNr neurons was significantly reduced in STN-lesioned animals. Moreover, the lesions modified the responses of SNr neurons to individual and concurrent stimulation of striatal D1 and D2 receptors. Bilateral striatal infusions of the D1/D2 agonist apomorphine (10 microg/microl/side) into the ventral-lateral striatum (VLS) were previously shown to cause significant increases in SNr cell firing (to 133% of baseline) in normal rats. However, in STN-lesioned rats, identical infusions caused no overall change in SNr activity (mean, 103% of basal rates). Conversely, selective stimulation of striatal D2 receptors by bilateral co-infusion of the D2 agonist quinpirole and the D1 antagonist SCH 23390 that previously caused little change in SNr firing in normal rats significantly inhibited their firing in STN-lesioned rats. Finally, the modest excitatory responses of SNr neurons to selective stimulation of striatal D1 receptors by co-infusions of SKF 82958 with the D2 antagonist YM09151-2 were not altered by lesions of the STN. These results implicate the STN as a mediator of excitatory response of SNr neurons to D2, and mixed D1/D2, dopamine receptor agonists in normal rats, and challenge conventional views on the role of the STN and the "indirect" pathway in regulating dopamine-stimulated output from the SNr.
Keywords:substantia nigra pars reticulata  striatum  SKF 82958  YM 09151‐2  quinpirole  SCH 23390
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号