首页 | 本学科首页   官方微博 | 高级检索  
     


Hypoxic regulation of Ca2+ signaling in cultured rat astrocytes
Authors:Smith I F  Boyle J P  Kang P  Rome S  Pearson H A  Peers C
Affiliation:Institute for Cardiovascular Research, University of Leeds, Leeds, United Kingdom.
Abstract:Acute hypoxia modulates various cell processes, such as cell excitability, through the regulation of ion channel activity. Given the central role of Ca2+ signaling in the physiological functioning of astrocytes, we have investigated how acute hypoxia regulates such signaling, and compared results with those evoked by bradykinin (BK), an agonist whose ability to liberate Ca2+ from intracellular stores is well documented. In Ca2+-free perfusate, BK evoked rises of [Ca2+]i in all cells examined. Hypoxia produced smaller rises of [Ca2+]i in most cells, but always suppressed subsequent rises of [Ca2+]i induced by BK. Thapsigargin pre-treatment of cells prevented any rise of [Ca2+]i evoked by either BK or hypoxia. Restoration of Ca2+ to the perfusate following a period of acute hypoxia always evoked capacitative Ca2+ entry. During mitochondrial inhibition (due to exposure to carbonyl cyanide p-trifluromethoxyphenyl hydrazone (FCCP) and oligomycin), rises in [Ca2+]i (observed in Ca2+-free perfusate) evoked by hypoxia or by BK, were significantly enhanced, and hypoxia always evoked responses. Our data indicate that hypoxia triggers Ca2+ release from endoplasmic reticulum stores, efficiently buffered by mitochondria. Such liberation of Ca2+ is sufficient to trigger capacitative Ca2+ entry. These findings indicate that the local O2 level is a key determinant of astrocyte Ca2+ signaling, likely modulating Ca2+-dependent astrocyte functions in the central nervous system.
Keywords:hypoxia  fluorimetry  Ca2+ stores  Ca2+ entry
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号