Design and Structure–Activity Relationship
of a Potent Furin Inhibitor Derived from Influenza Hemagglutinin |
| |
Authors: | Monika
A. Lewandowska-Goch,Anna Kwiatkowska,Teresa Ł epek,Ké vin Ly,Pauline Navals,Hugo Gagnon,Yves L. Dory,Adam Prahl,Robert Day |
| |
Abstract: | Furin plays an important role in various pathological states, especially in bacterial and viral infections. A detailed understanding of the structural requirements for inhibitors targeting this enzyme is crucial to develop new therapeutic strategies in infectious diseases, including an urgent unmet need for SARS-CoV-2 infection. Previously, we have identified a potent furin inhibitor, peptide Ac-RARRRKKRT-NH2 (CF1), based on the highly pathogenic avian influenza hemagglutinin. The goal of this study was to determine how its N-terminal part (the P8–P5 positions) affects its activity profile. To do so, the positional-scanning libraries of individual peptides modified at the selected positions with natural amino acids were generated. Subsequently, the best substitutions were combined together and/or replaced by unnatural residues to expand our investigations. The results reveal that the affinity of CF1 can be improved (2–2.5-fold) by substituting its P5 position with the small hydrophobic residues (Ile or Val) or a basic Lys. |
| |
Keywords: | Furin inhibitors, infectious diseases, structure− activityrelationship studies, enzyme kinetics, plasma stability |
|
|