首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Diamond Burnishing on Fatigue Behaviour of AISI 304 Chromium-Nickel Austenitic Stainless Steel
Authors:Jordan Maximov  Galya Duncheva  Angel Anchev  Vladimir Dunchev  Yaroslav Argirov
Affiliation:1.Department of Material Science and Mechanics of Materials, Technical University of Gabrovo, 5300 Gabrovo, Bulgaria; (G.D.); (A.A.); (V.D.);2.Department of Material Sciences, Technical University of Varna, 9010 Varna, Bulgaria;
Abstract:
The disadvantages of widely used austenitic stainless steels are their low hardness and relatively low fatigue strength. Conventional chemical-thermal surface treatments are unsuitable for these steels since they create conditions for inter-granular corrosion. An effective alternative is a low-temperature surface treatment, creating an S-phase within the surface layer, but it has a high cost/quality ratio. Austenitic steels can increase their surface micro-hardness and fatigue strength via surface cold working. When the goal is to increase the rotating bending fatigue strength of austenitic chromium-nickel steels, and the requirements for significant wear resistance are not paramount, diamond burnishing (DB) has significant potential to increase the fatigue strength and, based on the cost/quality ratio, can successfully compete with low-temperature chemical-thermal treatments. The main objective of this study is to establish the effect of DB on the rotating fatigue strength of AISI 304 L chromium-nickel austenitic steel. The influence of DB parameters on the surface integrity (SI) characteristics was studied. Optimal DB parameters under minimum roughness and maximum micro-hardness criteria were obtained. Rotating bending fatigue tests of the diamond burnished (in a different manner) and untreated specimens were performed. DB implemented via parameters providing maximum micro-hardness increased fatigue limit by 38% compared to untreated specimens.
Keywords:austenitic stainless steels   enhancement of fatigue strength   diamond burnishing   residual stresses   strain-induced martensite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号