Generative Design and Integrated 3D Printing Manufacture of Cross Joints |
| |
Authors: | Leyu Han Wenfeng Du Zhuang Xia Boqing Gao Mijia Yang |
| |
Affiliation: | 1.Institute of Steel and Spatial Structures, College of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China; (L.H.); (Z.X.);2.Henan Provincial Research Center of Engineering Technology on Assembly Buildings, Kaifeng 475004, China;3.Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China;4.Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA; |
| |
Abstract: | The integrated process of design and fabrication is invariably of particular interest and important to improve the quality and reduce the production cycle for structural joints, which are key components for connecting members and transferring loads in structural systems. In this work, using the generative design method, a pioneering idea was successfully realized to attain a reasonable configuration of the cross joints, which was then consecutively manufactured using 3D printing technology. Firstly, the initial model and generation conditions of a cross joint were constructed by the machine learning-based generative design algorithm, and hundreds of models were automatically generated. Then, based on the design objective and cost index of the cross joint, three representative joints were selected for further numerical analysis to verify the advantages of generative design. Finally, 3D printing was utilized to produce generative joints; the influences of printing parameters on the quality of 3D printing are further discussed in this paper. The results show that the cross joints from the generative design method have varied and innovative configurations and the best static behaviors. 3D printing technology can enhance the accuracy of cross joint fabrication. It is viable to utilize the integrated process of generative design and 3D printing to design and manufacture cross joints. |
| |
Keywords: | cross joints generative design 3D printing numerical analysis |
|
|