Epithelial K channel expressed in Xenopus oocytes is inactivated by protein kinase C. |
| |
Authors: | S K Sullivan K Swamy N R Greenspan M Field |
| |
Affiliation: | Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032. |
| |
Abstract: | K homeostasis is maintained in higher animals by epithelia of the kidney and intestine. Little is known regarding the molecular regulation of K secretion. We injected Xenopus oocytes with mRNA from teleost intestine, a K-secreting epithelium with apical membrane K channels. Oocytes expressed a conductance that displayed whole-cell current properties with the following characteristics: marked selectivity for K over Na and Cl, voltage-independent kinetics, Ca insensitivity, tonic activation, and inward rectification in symmetrical K. Barium, quinine, and tetraethylammonium blocked the conductance, whereas apamin, charybdotoxin, and 4-aminopyridine did not. The K conductance was rapidly (t1/2 = 10 min) and completely inactivated by 4 beta-phorbol 12-myristate 13-acetate but not by 4 alpha-phorbol 12,13-didecanoate. Sucrose density gradient fractionation revealed that mRNA required for expression is in the 1- to 2-kilobase size range, suggesting the possibility that a single subunit encodes the channel. The K conductance expressed from injection of size-fractionated mRNA was identical in all respects to that seen using unfractionated mRNA, including response to 4 beta-phorbol 12-myristate 13-acetate. The results suggest that protein kinase C regulates K secretion in epithelia by modulation of apical K channels. |
| |
Keywords: | |
|
|