首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of vascular calcium-gated chloride currents by blockers of KCa1.1, but not by modulators of KCa2.1 or KCa2.3 channels
Authors:WR Sones  N Leblanc  IA Greenwood
Affiliation:1.Division of Basic Medical Sciences, St George''s, University of London, London, UK;2.Department of Pharmacology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV, USA
Abstract:

Background and purpose:

Recent pharmacological studies have proposed there is a high degree of similarity between calcium-activated Cl channels (CaCCs) and large conductance, calcium-gated K+ channels (KCa1.1). The goal of the present study was to ascertain whether blockers of KCa1.1 inhibited calcium-activated Cl currents (IClCa) and if the pharmacological overlap between KCa1.1 and CaCCs extends to intermediate and small conductance, calcium-activated K+ channels.

Experimental approaches:

Whole-cell Cl and K+ currents were recorded from murine portal vein myocytes using the whole-cell variant of the patch clamp technique. CaCC currents were evoked by pipette solutions containing 500 nM free [Ca2+].

Key results:

The selective KCa1.1 blocker paxilline (1 µM) inhibited IClCa by ∼90%, whereas penitrem A (1 µM) and iberiotoxin (100 and 300 nM) reduced the amplitude of IClCa by ∼20%, as well as slowing channel deactivation. Paxilline also abolished the stimulatory effect of niflumic acid on the CaCC. In contrast, an antibody against the Ca2+-binding domain of murine KCa1.1 had no effect on IClCa while inhibiting spontaneous KCa1.1 currents. Structurally different modulators of small and intermediate conductance calcium-activated K+ channels (KCa2.1 and KCa2.3), namely 1-EBIO, (100 µM); NS309, (1 µM); TRAM-34, (10 µM); UCL 1684, (1 µM) had no effect on IClCa.

Conclusions and implications:

These data show that the selective KCa1.1 blockers also reduce IClCa considerably. However, the pharmacological overlap that exists between CaCCs and KCa1.1 does not extend to the calcium-binding domain or to other calcium-gated K+ channels.
Keywords:calcium-activated chloride currents   calcium-activated potassium currents   KCa1.1   KCa2.1   KCa2.3   mslo   vascular smooth muscle   iberiotoxin   1-EBIO
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号