首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合域注意力机制和残差网络的特纳综合征分类研究
引用本文:刘璐,李建强,陈适. 基于混合域注意力机制和残差网络的特纳综合征分类研究[J]. 中国数字医学, 2021, 0(2): 16-20
作者姓名:刘璐  李建强  陈适
作者单位:北京工业大学信息学部软件学院;北京协和医院
基金项目:国家重点研究项目(编号:2017YFB1400803)。
摘    要:
目的:利用人脸图像,构建基于深度学习的特纳综合征(Turner syndrome,TS)分类模型,旨在提高TS诊断准确率,降低诊断开销.方法:首先,将通道域注意力机制和空间域注意力机制以及残差结构相结合,提出一种具有混合域注意力模块的残差网络,然后使用深度迁移学习技术完成模型的初始化,最后使用TS人脸数据集对网络模型进...

关 键 词:特纳综合征  通道域注意力机制  空间域注意力机制  残差网络

A Classification Method of Turner Syndrome Based on Mixed Domain Attention Mechanism and Residual Network
LIU Lu,LI Jian-qiang,CHEN Shi. A Classification Method of Turner Syndrome Based on Mixed Domain Attention Mechanism and Residual Network[J]. China Digital Medicine, 2021, 0(2): 16-20
Authors:LIU Lu  LI Jian-qiang  CHEN Shi
Affiliation:(不详;Peking Union Medical College Hospital,Beijing 100730,P.R.C.)
Abstract:
Objective:A deep learning based classification model is proposed for the diagnosis of Turner syndrome(TS)using facial images,which aims at improving the diagnostic accuracy and reducing costs for patients.Methods:First,the spatial and channel attention mechanisms and the residual block are combined to build a residual network with mixed domain attention blocks;then,the deep transfer learning technology is utilized for model initialization,and finally the resulting model is fine tuned using TS facial images.Results:The empirical results show that the accuracy of the proposed model reaches 0.9171,which is superior to existing TS detection methods.Conclusion:The proposed model is capable to effectively classify TS facial images,which contributes to the clinical diagnosis of TS.
Keywords:Turner syndrome  channel attention mechanism  spatial attention mechanism  residual network
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号