首页 | 本学科首页   官方微博 | 高级检索  
     


The K5 Capsule of Escherichia coli Strain Nissle 1917 Is Important in Mediating Interactions with Intestinal Epithelial Cells and Chemokine Induction
Authors:Mohamed Hafez  Kelly Hayes  Marie Goldrick  Geoff Warhurst  Richard Grencis  Ian S. Roberts
Affiliation:Faculty of Life Sciences, University of Manchester,1. Infection, Injury, and Inflammation Group, Salford Royal NHS Foundation Trust, Manchester, M13 9PT, United Kingdom2.
Abstract:Escherichia coli strain Nissle 1917 has been widely used as a probiotic for the treatment of inflammatory bowel disorders and shown to have immunomodulatory effects. Nissle 1917 expresses a K5 capsule, the expression of which often is associated with extraintestinal and urinary tract isolates of E. coli. In this paper, we investigate the role of the K5 capsule in mediating interactions between Nissle 1917 and intestinal epithelial cells. We show that the loss of capsule significantly reduced the level of monocyte chemoattractant protein 1 (MCP-1), RANTES, macrophage inflammatory protein 2α (MIP-2α), MIP-2β, interleukin-8, and gamma interferon-inducible protein 10 induction by Nissle 1917 in both Caco-2 cells and MCP-1 induction in ex vivo mouse small intestine. The complementation of the capsule-minus mutation confirmed that the effects on chemokine induction were capsule specific. The addition of purified K5, but not K1, capsular polysaccharide to the capsule-minus Nissle 1917 at least in part restored chemokine induction to wild-type levels. The purified K5 capsular polysaccharide alone was unable to stimulate chemokine production, indicating that the K5 polysaccharide was acting to mediate interactions between Nissle 1917 and intestinal epithelial cells. The induction of chemokine by Nissle 1917 was generated predominantly by interaction with the basolateral surface of Caco-2 cells, suggesting that Nissle 1917 will be most effective in inducing chemokine expression where the epithelial barrier is disrupted.A probiotic has been defined as “live microorganisms which when administered in adequate amounts confer a health benefit on the host” (20). These benefits include the balancing and restoration of the intestinal microflora, repair of intestinal barrier functions (54), expression of bacteriocins (36), immunomodulatory effects (18, 43, 47, 53), and antagonizing epithelial colonization and invasion by pathogens (2). Escherichia coli strain Nissle 1917 was isolated from the feces of a soldier who did not develop diarrhea during a severe outbreak of shigellosis (38). Despite exhibiting a serotype (O6:K5:H1) that is characteristic of E. coli strains associated with urinary tract infections, Nissle 1917 apparently is nonpathogenic (25, 53) and has been used widely in preventing infectious diarrheal diseases (7, 14, 27, 37, 52, 53), the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn''s disease (7, 23, 32, 33), and to prevent the colonization of the digestive tract of neonates by pathogens (35). Recently, there has been a growing interest in investigating the immunomodulatory effect of Nissle 1917. Previous studies showed that colonization by Nissle 1917 may lead to an alteration of the hosts'' cytokine repertoire (13, 49), increased immunoglobulin A secretion (14), lymphocyte or macrophage activation (13), the modulation of CD4+ clonal expansion (47), the stimulation of antimicrobial peptide production by intestinal epithelial cells (39, 52, 54), and alterations of the pro- and anti-inflammatory balance of local cytokines (49). Recently it has been shown that Nissle 1917 activates γδT cells, stimulating CXCL8 and interleukin-6 (IL-6) release but inhibiting tumor necrosis factor alpha (TNF-α) secretion (26). Following activation, Nissle 1917 induced apoptosis in activated γδT cells, indicating a key role for Nissle 1917 in interacting with the subset of T cells that operate at the interface between the adaptive and innate immune responses (26). Nissle 1917 also has been shown to express a direct anti-inflammatory activity on epithelial cells by blocking TNF-α-induced IL-8 secretion through a NF-κB-independent mechanism (28). Although the immunomodulatory effects of Nissle 1917 are well documented, the contribution of individual microbial components in mediating such effects is less well understood. So far, only a role for flagellin in mediating the induction of human β-defensin expression by Nissle 1917 has been established (44). Nissle 1917 expresses a K5 capsule on its cell surface, and a number of roles for polysaccharide capsules in the virulence of E. coli have been proposed, including resistance to phagocytosis and complement-mediated killing and the increased colonization of the host (42). In contrast, in the case of other encapsulated pathogens, it has been shown that the expression of a polysaccharide capsule can affect the induction of chemokines following attachment to host cells (6, 17, 22, 24, 40, 41, 45, 50). The aim of the present study was to investigate the role of the K5 capsule in mediating the immunomodulatory activity of Nissle 1917.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号